Proteolytic and collagenolytic activity of mycelial fungi in the process of deep cultivation study


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relevance. Enzymes with proteolytic and collagenolytic activity have been considered in recent years as therapeutic agents that can be used in medicine for the treatment of various pathologies. The use of microorganisms as producers of these biologically active substances has a number of advantages. Despite the existence of numerous studies devoted to the study of the hydrolytic activity of various microorganisms, the search for new producers of proteinases and collagenases remains an urgent biotechnological task. Objective. To study the proteolytic and collagenolytic activity of previously selected mycelial fungi during deep cultivation using a modified Chapek medium. Material and methods. The objects of the study were 5 strains of 4 species of micromycetes from the VILAR microorganisms collection: Aspergillus fumigatus F 22, A. sydowii F 25, Botrytis terrestris F 38, Cladosporium herbarum F 33, 57. Deep cultivation was carried out using a liquid modified medium Chapek with partial replacement of sucrose for collagen (0.5% sucrose and 1.5% collagen). The concentration of protein, sucrose, total proteolytic and collagenolytic activity were determined in the filtrates of the culture fluid. Results. The conducted studies have shown that in the process of deep cultivation, the studied micromycetes grew on modified media with partial replacement of sucrose with collagen. It was noted that on 3-4 days there was complete utilization of sucrose from the nutrient fluid and the beginning of active accumulation of extracellular proteins. It was found that the micromycete A. fumigatus F 22 had the highest proteolytic, specific proteolytic activity during cultivation, as well as the maximum collagenolytic activity of secreted enzymes. Conclusions. Based on the results obtained, the culture of A. fumigatus F 22 was selected for further research as a potential colla-genase producer.

全文:

受限制的访问

作者简介

Z. Nikitina

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: nikitinaz@yandex.ru
Dr.Sc. (Biol), Professor

I. Gordonova

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

Email: gordonova777@yandex.ru
Ph.D. (Biol), Leading Research Scientist

E. Nasibov

All-Russian Scientific Research Institute of Medicinal and Aromatic Plants

编辑信件的主要联系方式.
Email: nikitinaz@yandex.ru

Post-graduate Student

参考

  1. Tandon S., Sharma A., Singh S., et al. Therapeutic enzymes: Discoveries, production and applications. J. Drug Delivery Science and Technology. 2021; 63: 102455-102472.
  2. Alipour H., Raz A., Zakeri S., et al. Therapeutic applications of collagenase (metalloproteases): A review. Asian. Pac. J. Trop. Biomed. 2016; 6(11): 975-981.
  3. Архинчеева Н.Ц., Бальхаев И.М. Современное состояние и перспективные направления развития пептидной терапии. Вопросы биологической, медицинской и фармацевтической химии. 2022; 25(2): 3-6.
  4. Кистенев Ю.В., Вражнов Д.А., Николаев В.В. и др. Исследование пространственной структуры коллагена с применением методов многофотонной микроскопии и машинного обучения. Успехи биологической химии. 2019; 59: 219-252.
  5. Потехина Ю.П. Структура и функции коллагена. Российский остеопатический журнал. 2016; № 1-2 (32-33): 87-99.
  6. Fields G.B. Interstitional collagen catabolism. J. Biol. Chem. 2013; 288 (13): 8785-8793.
  7. Waycaster C., Carter M.J., Gilligan A.M., et al. Comparative cost and clinical effectiveness of clostridial collagenase ointment for chronic dermal ulcers. J. Comp. Eff. Res. 2018; 7(2): 149-165.
  8. Майорова А.В., Сысуев Б.Б., Иванкова Ю.О., Ханалиева ИА. Коллагеназы в медицинской практике: современные средства на основе коллагеназы и перспективы их совершенствования. Фармация и фармакология. 2019; 7(5): 260-270.
  9. Zhang D., Zhang Y., Wang Z., Zhang X., et al. Target radiofrequency combined with collagenase chemonucleolysis in the treatment of lumbar intervertebral disc herniation. Int. J. Clin. Exp. Med. 2015; 8(1): 526-532.
  10. Salma S.S., Abdel-Halim M., Ali M.E., et al. Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: The effect of chitosan intrinsic collagen binding on the success of targeting. Europ. J. Pharmaceutics Biopharmaceutics. 2020; 148: 54-66.
  11. Ziegelmann M.J., Heslop D., Houlihan M., et al. The Influence of Indentation Deformity on Outcomes with Intra-lesional Collagenase Clostridium Histolyticum Monotherapy for Peyronie's Disease. Urology. 2020; 139: 122-128.
  12. Corder R.D., Gadi S.V., Vachieri R.B., et al. Using rheology to quantify the effects of localized collagenase treatments on uterine fibroid digestion. Acta Biomater. 2021; 134: 443-452.
  13. Loganathan G., Balamurugan A.N., Venugopal S. Human pancreatic tissue dissociation enzymes for islet isolation: Advances and clinical perspectives. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14: 159-166.
  14. Wanderley M.C.A., Wanderley J.M., Neto D., et al. Colla-genolytic enzymes produced by fungi: a systematic review. Brasilian J. Microbiology. 2017; 48: 13-24.
  15. Sharkova T.S., Kurakov A.V., Osmolovskiy A.A., et al. Screening of producers of proteinases with fibrinolytic and colla-genolytic activities among micromycetes. Microbiology. 2015; 84(3): 359-64.
  16. Zhang Y.-Z., Ran L.-Y., Li C.-Y., Chen X.-L. Diversity, structures, and collagen-degrading mechanisms of bacterial colla-genolytic proteases. Appl. Environ. Microbiol. 2015; 81: 6098-6107.
  17. Pal G.K., Suresh P. V. Microbial collagenases: Challenges and prospect in production and potential applications in food and nutrition. RSC Advances. 2016; 6: 40-56.
  18. Daboor S.M., Budge S.M., Ghaly A.E., et al. Extraction and purification of collagenase enzymes: a critical review. Am. J. Biochem. Biotechnol. 2010; 6(4): 239-263.
  19. Конон А.Д., Петровский С.В., Шамбурова М.Ю. и др. Особенности биотехнологий клостридиальных коллагеназ - перспективных ферментов медицинского назначения. Медицина экстренных ситуаций. 2019; № 2(56): 45-57.
  20. Никитина З.К., Гордонова И.К., Насибов ЭМ. Сравнительная характеристика коллагенолитической активности грибов, относящихся к различным родам. Сб. материалов юбилейной Междунар. научн. конф. «90 лет - от растения до лекарственного препарата: достижения и перспективы». М., 2021; 293-300.
  21. Кусакина М.Г., Суворов В.И., Чудинова Л.А. Большой практикум «Биохимия». Лабораторные работы: учеб. пособие. Пермь: Перм. гос. нац. исслед. ун-т, 2012; 148 с.
  22. Lee Y.P., Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochemistry. 1996; 14: 71-77.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Changes in the concentration of protein and sucrose in filtrates during the cultivation of micromycetes

下载 (204KB)
3. Fig. 2. Changes in the total proteolytic activity in filtrates during the cultivation of micromycetes

下载 (100KB)
4. Fig. 3. Changes in the specific proteolytic activity in filtrates during the cultivation of micromycetes

下载 (73KB)

版权所有 © Russkiy Vrach Publishing House, 2022
##common.cookie##