Accumulation of polyphenols at the beginning of photomorphogenesis in vitro tea plant cultures under the influence of different light intensity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. An important direction in the biotechnology of plant cell cultures is the search for factors and influences that contribute to increasing the accumulation of pharmacologically valuable metabolites in them, including polyphenols. These factors include light, the effect of which activates the processes of photomorphogenesis in in vitro cultures, regulates their differentiation and metabolic processes. All this depends on the intensity of the light flux, the origin of the cells and tissues cultivated in vitro, as well as the economic value of the synthesized plant metabolites. One of the promising pharmacologically valuable crops are tea plants (Camellia sinensis L.), as well as callus cultures initiated from them, which are characterized by the accumulation of various polyphenols, including flavans – substances with P-vitamin capillary-strengthening activity.

The aim of the study was to compare the effect of different light intensity on the morpho-physiological characteristics of tea callus cultures, as well as the accumulation and localization of polyphenols in them.

Material and methods. The object of the study was tea callus cultures of stem origin grown for 40 days at light intensity: 50 µmol·m-2·s-1, 75 µmol·m-2·s-1 and 100 µmol·m-2·s-1 (low, medium and high intensity, respectively). Morphophysiological parameters of calluses (color, density, water content), the total phenolics and flavans content in them, as well as their localization were analyzed.

Results. The cultivation of tea calluses in the light was accompanied by their changing-over to photomorphogenesis, which manifested itself in the greening of the cultures and the chloroplasts formation in cells. The greatest efficiency of this process was noted at the high light intensity, which correlated with the maximum accumulation of polyphenols and flavans, exceeding that in cultures grown at lower light flux values. Consequently, the cultivation of tea callus cultures at different light intensities makes it possible to regulate the polyphenols accumulation in them – biologically active plant metabolites with antioxidant activity.

全文:

受限制的访问

作者简介

M. Zubova

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mariia.zubova@yandex.ru
ORCID iD: 0000-0001-7704-8537

Ph.D. (Biol.), Research Scientist

俄罗斯联邦, Botanicheskaya, 35, Moscow, 127276

T. Nechaeva

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: nechaevatatyana.07@yandex.ru
ORCID iD: 0000-0003-3341-4763

Research Scientist

俄罗斯联邦, Botanicheskaya, 35, Moscow, 127276

V. Katanskaya

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: vera@katanski.com
ORCID iD: 0000-0002-9306-5705

Ph.D. (Biol.), Junior Research Scientist

俄罗斯联邦, Botanicheskaya, 35, Moscow, 127276

A. Belousova

Moscow Pedagogical State University

Email: alina98belka@gmail.com
ORCID iD: 0009-0003-6093-8850

Student, Institute of Biology and Chemistry

俄罗斯联邦, st. Malaya Pirogovskaya, 1, building 1, Moscow, 119991

E. Zhivukhina

Moscow Pedagogical State University

Email: zhivukhina@yandex.ru

Ph.D. (Biol.), Associate Professor, Institute of Biology and Chemistry

俄罗斯联邦, Москва, 119991, ул. Малая Пироговская, д. 1, стр. 1

N. Zagoskina

K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: nzagoskina@mail.ru
ORCID iD: 0000-0002-1457-9450

Dr.Sc. (Biol.), Professor, Leading Research Scientist

俄罗斯联邦, Botanicheskaya, 35, Moscow, 127276

参考

  1. Kusnetsov V.V., Doroshenko A S., Kudryakova N.V., Danilova M.N. Role of phytohormones and light in deetiolation. Russian Journal of Plant Physiology. 2020; 67: 971–984. doi: 10.1134/S1021443720060102.
  2. Запрометов М.Н. Фенольные соединения: распространение, метаболизм и функции в растениях. М: Наука. 1993; 272 с. [Zaprometov M.N. Fenol'nye soedineniya: rasprostranenie, metabolizm i funkcii v rasteniyah. M: Nauka. 1993, 272 s. (In Russ.).].
  3. Zagoskina N.V., Zubova M.Y., Nechaeva T.L. et al. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (Review). Intern. J. Molecular Sciences. 2023; 24(18). doi: 10.3390/ijms241813874.
  4. Мизина П.Г. Растительные и минеральные биологически активные комплексы для медицинских технологий здоровьесбережения. М.: ВИЛАР. 2021. 164 с. [Mizina P.G. Rastitel'nye i mineral'nye biologicheski aktivnye kompleksy dlya medicinskih tekhnologij zdorov'esberezheniya. M.: VILAR. 2021. 164 s. (In Russ.).].
  5. Chandran H., Meena M., Barupal T., Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. reports. 2020; 26: e00450. doi: 10.1016/j.btre.2020.e00450.
  6. Batista D.S., Felipe S.H.S., Silva T.D. et al. Light quality in plant tissue culture: does it matter? In vitro Cell. Dev. Biol.-Plant. 2018; 54: 195–215. doi: 10.1007/s11627-018-9902-5.
  7. Wang C., Han J., Pu Y. et al. Tea (Camellia sinensis): a review of nutritional composition, potential applications, and omics research. Applied Sciences. 2022;12(12): 5874. doi: 10.3390/app12125874.
  8. Ossipov V., Zubova M., Nechaeva T. et al. The regulating effect of light on the content of flavan-3-ols and derivatives of hydroxyben-zoic acids in the callus culture of the tea plant, Camellia sinensis L. Biochemical Systematics and Ecology. 2022; 101: 104383. doi: 10.1016/j.bse.2022.104383.
  9. Nikolaeva T.N., Lapshin P.V., Zagoskina N.V. Method for determining the total content of phenolic compounds in plant extracts with Folin–Denis reagent and Folin–Ciocalteu reagent: modification and comparison. Rus. J. Bioorganic Chemistry. 2022; 48: 1519–1525. doi: 10.1134/S1068162022070214.
  10. Zagoskina N.V., Dubravina G.A., Alyavina A.K. et al. Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Rus. J. Plant Physiol. 2003; 50: 270–275.
  11. Lysenko V., Kirichenko E., Logvinov A. et al. Ultrastructure, CO2 assimilation and chlorophyll fluorescence kinetics in photosynthe-sizing Glycine max callus and leaf mesophyll tissues. Horticulturae. 2023; 9: 1211. DOI:10.3390/ horticulturae9111211.
  12. Landi M., Zivcak M., Sytar O. et al. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Bio-chim. Biophys. Acta (BBA) - Bioenergetics. 2020; 1861(2): 148131. doi: 10.1016/j.bbabio.2019.148131.
  13. Liu X., Wang P., Li R. et al. Cellular and metabolic characteristics of peach antherderived callus. Scientia Horticultura. 2023; 311: 111796. doi: 10.1016/j.scienta.2022.111796.
  14. Cackett L., Luginbuehl L.H., Schreier T.B. et al. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist. 2022; 233(5): 2000–2016. doi: 10.1111/nph.17839.
  15. Otegui M.S. Imaging polyphenolic compounds in plant tissues. Recent advances in polyphenol research. 2021; 7: 281–295. doi: 10.1002/9781119545958.ch11.
  16. Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С. и др. Флавоноиды: биохимия, биофизика, медицина. Пущино: Sуnchrobook. 2013. 310 с. [Tarahovskij Yu.S., Kim Yu.A., Abdrasilov B.S. i dr. Flavonoidy: biohimiya, biofizika, medicina. Pushchino: Sуnchro-book. 2013. 310 s. (In Russ.).].
  17. Siemińska-Kuczer A., Szymańska-Chargot M., Zdunek A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chemistry. 2022; 373: 131487. doi: 10.1016/j.foodchem.2021.131487.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Tea calli grown under low (a), medium (б) and high (в) light intensity

下载 (44KB)
3. Fig. 2. Fresh cut of tea callus cultures: a – parenchyma cells (ПК); б – tracheidal elements (TЭ); в – chloroplasts (ХП)

下载 (124KB)
4. Fig. 3. Localization of flavans in tea calli grown under low (a), medium (б, в) and high (г) light intensities. Reaction with vanillin reagent. ВК – vacuole; КС – cell wall; МК – intercellular space; TЭ – tracheidal elements

下载 (97KB)

版权所有 © Russkiy Vrach Publishing House, 2024
##common.cookie##