Evaluation of structural and biological characteristics of decellularized Wharton's jelly from human umbilical cord
- 作者: Tovpeko D.V.1, Kondratenko A.A.1,2, Okolitenko M.S.1, Raguzina D.V.1, Zakopayko B.A.1, Mittenberg A.G.1,3, Shabelnikov S.V.3, Lapina E.S.3, Alexander-Sinclair E.I.3, Zemlyanoy D.A.2, Bagramyan E.A.1, Chernov V.E.1,4, Kalyuzhnaya L.I.1
-
隶属关系:
- S.M. Kirov Military Medical Academy
- Saint Petersburg State Pediatric Medical University
- Institute of Cytology
- Agrophysical Research Institute
- 期: 卷 28, 编号 8 (2025)
- 页面: 45-56
- 栏目: Problems of experimental biology and medicine
- URL: https://journals.eco-vector.com/1560-9596/article/view/689305
- DOI: https://doi.org/10.29296/25877313-2025-08-06
- ID: 689305
如何引用文章
详细
Introduction. Wharton's jelly of the human umbilical cord is a connective tissue of extraembryonic origin that maintains characteristics of the embryonic phenotype, including the capacity for rapid tissue regeneration and scar-free healing of fetal wounds. Decellularization refers to the removal of cells and cellular components from biological tissues while preserving the essential structural and compositional features of the extracellular matrix.
The aim of the work was to evaluate the structural and biological characteristics of the decellularized extracellular matrix from Wharton's jelly of the human umbilical cord.
Material and methods. Decellularization was performed by a detergent method using a sterile solution of sodium dodecyl sulfate at a concentration of 0.01% for 24 h at room temperature. The component composition of Wharton's jelly of the human umbilical cord before and after the decellularization process was assessed using spectral analysis methods. To study the biological characteristics of the decellularized extracellular matrix from Wharton's jelly of the human umbilical cord, the MTT test and the subcutaneous implantation model in mice were used.
Results. The content of total collagen by hydroxyproline in Wharton's jelly of the human umbilical cord before decellularization ranged from 244.8 to 507.2 μg/mg, and after – from 398.9 to 777.3 μg/mg, hyaluronic acid and sulfated glycosaminoglycans – from 11.5 to 16.5 and from 16.1 to 22.5 μg/mg before decellularization and from 15.6 to 22.1 and from 25.6 to 29.6 μg/mg after decellularization, respectively. Multiple collagen types (I, III, IV, V, VI, XII), as well as fibronectin, lumican, decorin, biglycan, and tenascin were identified in Wharton's jelly of the human umbilical cord. The absence of cytotoxicity of model media based on extracts from decellularized extracellular matrix from Wharton's jelly of the human umbilical cord was revealed. No signs of rejection or enhanced cellular inflammatory response were observed during subcutaneous implantation in mice.
Conclusions. The practical possibility of developing a drug and/or medical device for regenerative medicine based on decellularized extracellular matrix from Wharton's jelly of the human umbilical cord was demonstrated.
全文:

作者简介
D. Tovpeko
S.M. Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: tovpeko.dmitry@gmail.com
ORCID iD: 0000-0003-0286-3056
SPIN 代码: 3698-4656
Junior Researcher, Research Laboratory (Military Therapy) of the Research Department (Experimental Medicine) of the Research Center
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044A. Kondratenko
S.M. Kirov Military Medical Academy; Saint Petersburg State Pediatric Medical University
Email: kondraa24@gmail.com
ORCID iD: 0000-0002-8511-5864
SPIN 代码: 1668-3497
Ph.D. (Biol.), Researcher, Research Laboratory (Cellular Technologies) of the Research Department (Medical and Biological Research) of the Research Center, Senior Lecturer, Department of Histology and Embryology named after Professor A.G. Knorre
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044; Litovskaya st., 2, Saint Petersburg, 194100M. Okolitenko
S.M. Kirov Military Medical Academy
Email: matveyoko@mail.ru
ORCID iD: 0009-0002-4011-1699
SPIN 代码: 4319-3889
Cadet, Faculty 3 (Training of Doctors for the Aerospace Forces)
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044D. Raguzina
S.M. Kirov Military Medical Academy
Email: daryavyacheslavovna@inbox.ru
ORCID iD: 0009-0008-0526-5557
SPIN 代码: 9154-8250
Junior Researcher, Research Laboratory (Water and Food Expertise) of the Research Department (Food and Water Supply) of the Research Center
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044B. Zakopayko
S.M. Kirov Military Medical Academy
Email: bogdanzakopayko@gmail.com
ORCID iD: 0009-0004-9762-0886
SPIN 代码: 1589-8989
Junior Researcher, Research Laboratory (Military Therapy) of the Research Department (Experimental Medicine) of the Research Center
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044A. Mittenberg
S.M. Kirov Military Medical Academy; Institute of Cytology
Email: a.mittenberg@gmail.com
ORCID iD: 0000-0002-3675-0597
SPIN 代码: 4791-0747
Ph.D. (Biol.), Senior Researcher, Research Laboratory (Cellular Technologies) of the Research Department (Medical and Biological Research) of the Research Center, Leading Researcher, Head of the Proteomics and Mass Spectrometry Group of the Center for Cellular Technologies
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044; Tikhoretsky pr., 4, Saint Petersburg, 194064S. Shabelnikov
Institute of Cytology
Email: buddasvami@gmail.com
ORCID iD: 0000-0002-5693-5310
SPIN 代码: 1951-4801
Ph.D. (Biol.), Senior Researcher, Proteomics and Mass Spectrometry Group of the Center for Cellular Technologies
俄罗斯联邦, Tikhoretsky pr., 4, Saint Petersburg, 194064E. Lapina
Institute of Cytology
Email: kathie.lap@yandex.ru
Senior Research Assistant, Cellular Biotechnology Laboratory of the Center for Cellular Technologies
俄罗斯联邦, Tikhoretsky pr., 4, Saint Petersburg, 194064E. Alexander-Sinclair
Institute of Cytology
Email: elga.aleks@gmail.com
ORCID iD: 0000-0001-6704-3062
SPIN 代码: 2548-5932
Researcher, Cellular Biotechnology Laboratory of the Center for Cellular Technologies
俄罗斯联邦, Tikhoretsky pr., 4, Saint Petersburg, 194064D. Zemlyanoy
Saint Petersburg State Pediatric Medical University
Email: zemlianoj@mail.ru
ORCID iD: 0000-0003-4716-809X
SPIN 代码: 3871-7531
Ph.D. (Med.), Associate Professor, Associate Professor of the Department of General Hygiene
俄罗斯联邦, Litovskaya st., 2, Saint Petersburg, 194100E. Bagramyan
S.M. Kirov Military Medical Academy
Email: elin.bagramian@yandex.ru
ORCID iD: 0009-0009-8650-2426
Post-Graduate Student, Department of Obstetrics and Gynecology
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044V. Chernov
S.M. Kirov Military Medical Academy; Agrophysical Research Institute
Email: vechernov@mail.ru
ORCID iD: 0000-0002-2440-3782
SPIN 代码: 8315-1161
Ph.D. (Biol.), Senior Researcher, Research Laboratory (Cellular Technologies) of the Research Department (Medical and Biological Research) of the Research Center, Senior Researcher, Department of Plant Light Physiology and Bioproductivity of Agroecosystems
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044; Grazhdanskiy pr., 14, Saint Petersburg, 195220L. Kalyuzhnaya
S.M. Kirov Military Medical Academy
Email: terrestra@mail.ru
ORCID iD: 0000-0001-6698-4872
SPIN 代码: 1348-3306
Dr.Sc., (Med.), Senior Researcher, Research Laboratory (Tissue Engineering) of the Research Department (Medical and Biological Research) of the Research Center
俄罗斯联邦, Academician Lebedev st., 6, lit. G, Saint Petersburg, 194044参考
- Yi S., Ding F., Gong L., Gu X. Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Current stem cell research & therapy. 2017; 12(3): 233–246. doi: 10.2174/1574888X11666160905092513.
- Vilaça-Faria H., Noro J., Reis R. L., Pirraco R. P. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioactive materials. 2024; 34: 494–519. doi: 10.1016/j.bioactmat.2024.01.004.
- Kočí Z., Výborný K., Dubišová J. et al. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue engineering. Part C, Methods. 2017; 23(6): 333–345. doi: 10.1089/ten.TEC.2017.0089.
- Beiki B., Zeynali B., Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton's jelly derived extra cellular matrix for wound healing. Materials science & engineering. C, Materials for biological applications. 2017; 78: 627–638. doi: 10.1016/j.msec.2017.04.074.
- Protzman N. M., Mao Y., Long D. et al. Placental-derived biomaterials and their application to wound healing: a review. Bioengineering (Basel, Switzerland). 2023; 10(7): 829. doi: 10.3390/bioengineering10070829.
- Kang S., Shi X., Chen Y. et al. Injectable decellularized Wharton's jelly hydrogel containing CD56+ umbilical cord mesenchymal stem cell-derived exosomes for meniscus tear healing and cartilage protection. Materials today. Bio. 2024; 29: 101258. doi: 10.1016/j.mtbio.2024.101258.
- Neto A. E., Foltz K. M., Fuchs T. et al. Decellularized Wharton's jelly and amniotic membrane demonstrate potential therapeutic implants in tracheal defects in rabbits. Life (Basel, Switzerland). 2024; 14(6): 782. doi: 10.3390/life14060782.
- Fu Y. S., Tsai S. W., Tong Z. J. et al. Wharton's jelly of the umbilical cord serves as a natural biomaterial to promote osteogenesis. Biomaterials Science. 2024; 12(24): 6284–6298. doi: 10.1039/d3bm02137h.
- Товпеко Д. В., Кондратенко А. А., Калюжная Л. И. и др. Биотехнологический бесклеточный неиммуногенный продукт сохраняет основные регенеративные структурные компоненты пуповины человека. Биотехнология. 2023; 39(1): 49–59. [Tovpeko D. V. Kondratenko A. A. Kalyuzhnaya L. I. et al. Biotechnological cell-free non-immunogenic product preserves the main regenerative structural components of the human umbilical cord. Biotekhnologiya. 2023; 39(1): 49–59. (In Russ.)] doi: 10.56304/S0234275823010118.
- Патент РФ на изобретение RU 2795904 C1. Калюжная-Земляная Л. И., Товпеко Д. В., Кондратенко А. А. и др. Способ изготовления бесклеточного матрикса из пуповины человека для создания высокорегенеративного раневого покрытия. 2023. [Patent RF na izobretenie RU 2795904 С1. Kalyuzhnaya-Zemlyanaya L.I., Tovpeko D.V., Kondratenko A.A. et al. Method for manufacturing cell-free matrix from human umbilic cord to create highly generative wound covering. 2023. (In Russ.)].
- Игнатьева Н. Ю., Данилов Н. А., Аверкиев С. В. и др. Определение гидроксипролина в тканях и оценка содержания в них коллагена. Журнал аналитической химии. 2007; 62(1): 59–65. [Ignat’eva N.Yu., Danilov N.A., Averkiev S.V. et al. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Zhurnal analiticheskoj himii. 2007; 62(1): 59–65. (In Russ.)].
- Iimaa T., Ikegami Y., Bual R. et al. Analysis of sulfated glycosaminoglycans in ECM Scaffolds for tissue engineering applications: modified alcian blue method development and validation. Journal of functional biomaterials. 2019; 10(2): 19. doi: 10.3390/jfb10020019
- Crapo P. M., Gilbert T. W., Badylak S. F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32(12): 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057.
- Keller S., Liedek A., Shendi D. et al. Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods. RSC advances. 2020; 10(58): 35273–35286. doi: 10.1039/d0ra06819e.
- Tarnutzer K., Siva Sankar D., Dengjel J., Ewald C. Y. Collagen constitutes about 12% in females and 17% in males of the total protein in mice. Scientific reports. 2023; 13(1): 4490. doi: 10.1038/s41598-023-31566-z.
- Capella-Monsonís H., Coentro J. Q., Graceffa V. et al. An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nature protocols. 2018; 13(3): 507–529. doi: 10.1038/nprot.2017.117.
- Yang P., Lu Y., Gou W. et al. Glycosaminoglycans' ability to promote wound healing: from native living macromolecules to artificial biomaterials. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2024; 11(9): e2305918. doi: 10.1002/advs.202305918.
- Leahy T. P., Fung A. K., Weiss S. N. et al. Investigating the temporal roles of decorin and biglycan in tendon healing. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2023; 41(10): 2238–2249. doi: 10.1002/jor.25590.
- Karamanou K., Perrot G., Maquart F. X., Brézillon S. Lumican as a multivalent effector in wound healing. Advanced drug delivery reviews. 2018; 129: 344–351. doi: 10.1016/j.addr.2018.02.011.
- Кузьмичева В. И., Волова Л. Т., Гильмиярова Ф. Н. и др. Фибробласты как объект изучения пролиферативной активности in vitro. Наука и инновации в медицине. 2020; 5(3): 210–215. [Kuzmicheva V. I., Volova L. T., Gilmiyarova F. N. et al. Fibroblasts as the subject of proliferative activity research in vitro. Science and Innovations in Medicine. 2020; 5(3): 210–215. (In Russ.)]. doi: 10.35693/2500-1388-2020-5-3-210-215.
补充文件
