The role of modern and promising methods of diagnostics of functional ventilation disorders in pulmonological patients

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The current problems of the application of existing and promising methods for assessing respiratory function in a modern pulmonological hospital are considered. Determining the degree of respiratory disorders is key both in the period of exacerbation of chronic bronchopulmonary diseases and intercommunal and/or rehabilitation period and identifies the tactics and scope of therapeutic measures. There is a wide variety of hardware methods for assessing respiratory function: body plethysmography, volumetric capnography, computer pulse oximetry monitoring, ergospirometry, impulse oscillometry, etc. Most of them are non-invasive, for some standardized stress tests with physical, drug, and other load options. Each of the methods for assessing ventilation disorders has its advantages and disadvantages; therefore, it is common to search for new or refine existing approaches in assessing respiratory function. The entire arsenal of functional tests should be considered in the form of an integrated approach in examining patients, based on the clinical situation, with the choice of optimal, most informative methods. A novel and promising method is stress hypoxic testing based on the principle of feedback, which allows the assessment of the reaction of the body of a pulmonological patient to hypoxic stress to avoid the risks of emergency conditions without loss of informative results. The prospect of further growth in the information content and quality of the obtained data of functional respiratory tests is the introduction into research on the principles of biofeedback and automated evaluation of the data provided to the researcher and the attending physician.

Full Text

Restricted Access

About the authors

Elena S. Bulka

Kirov Military Medical Academy

Email: visoret@list.ru
ORCID iD: 0000-0001-9782-4599
SPIN-code: 9209-7789

residency student

Russian Federation, Saint Petersburg

Vladimir V. Salukhov

Kirov Military Medical Academy

Email: visoret@list.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Denis V. Kovlen

Kirov Military Medical Academy

Email: visoret@list.ru
ORCID iD: 0000-0001-6773-9713
SPIN-code: 6002-2766
Scopus Author ID: 8444825300
ResearcherId: Y-4283-2018

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Mikhail A. Kharitonov

Kirov Military Medical Academy

Email: visoret@list.ru
ORCID iD: 0000-0002-6521-7986
SPIN-code: 7678-2278

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Kirill A. Bulka

Kirov Military Medical Academy

Author for correspondence.
Email: visoret@list.ru
ORCID iD: 0000-0002-8871-0335
SPIN-code: 2831-2165
ResearcherId: HPB-8253-2023

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

References

  1. Zaitsev AA, Okovityi SV, Kryukov EV. Kashel’. Moscow; 2015. 59 p. (In Russ.).
  2. Krivonos PS, Kryzhanovskii VL, Laptev AN. Funktsional’nye metody issledovaniya legkikh. Minsk: BGMU; 2009. 54 p. (In Russ.).
  3. Shustov SB, Kurenkova IG, Kharitonov MA, Asyamov KV. Lung function abnormalities in different respiratory diseases. Pulmonologiya. 2017;27(3):410–418. (In Russ.). doi: 10.18093/0869-0189-2017-27-3-410-418
  4. Kharitonov MA, Shustov SB, Kazantsev VA, et al. From chronic pneumonia to chronic obstructive pulmonary disease: a legitimate evolution of views or a conscientious delusion of pulmonologists? Medline.ru. Rossiiskii biomeditsinskii zhurnal. 2018;19:917–940. (In Russ.).
  5. Chuchalin AG, Chernyak AV, Chikina SYu, et al. Funktsional’naya diagnostika v pul’monologii. Moscow: Atmosfera; 2009. 192 p. (In Russ.).
  6. Asyamov KV, Bogomolov AB, Burkova YuS, et al. Prakticheskaya pul’monologiya: rukovodstvo dlya vrachei. Salukhov VV, Kharitonov MA, editors. Moscow: GEHOTAR-Media, 2017. 416 p. (In Russ.).
  7. Shik LL, Kanaev NN, Kuznetsova VK. Rukovodstvo po klinicheskoi fiziologii dykhaniya. Leningrad: Meditsina, 1980. 375 p. (In Russ.).
  8. Golpe R, Jiminez A, Carpizo R, Cifrian JM. Utility of home oximetry as a screening test for patients with moderate to severe symptoms of obstructive sleep apnea. Sleep. 1999;22(7):932–937.
  9. Subbotin SV, Ponomaryova IB, Byalovskiy YuYu, Abrosimov VN. Volumetric Capnography to Assess Functional Respiratory Disturbances in Patients with Bronchial Asthma. Modern Technologies in Medicine. 2017;9(3):93–101. (In Russ.). doi: 10.17691/stm2017.9.3.13
  10. Gravenstein JS, Jaffe MB, Gravenstein N, Paulus DA, editors. Capnography. Cambridge University Press; 2011. 488 p. doi: 10.1017/CBO9780511933837
  11. Qi G-S, Gu W-C, Yang W-L, et al. The ability of volumetric capnography to distinguish between chronic obstructive pulmonary disease patients and normal subjects. Lung. 2014;192(5):661–668. doi: 10.1007/s00408-014-9615-4
  12. Gonzalez-Moro RJM, de Lucas Ramos P, Sanchez Juanes MJ, et al. Usefulness of the visual analysis of night oximetry as a screening method in patients with suspected clinical sleep apnea syndrome. Arch Bronconeumol. 1996;32(9):437–441. doi: 10.1016/S0300-2896(15)30702-X
  13. Lacassagne L, Didier A, Murris-Espin M, et al. Role of nocturnal oximetry in screening for sleep apnea syndrome in pulmonary medicine: study of 329 patients. Rev Mal Respir. 1997;14(3):201–207.
  14. Levy P, Pepin JL, Deschaux-Blanc C, et al. Accuracy of oximetry for detection of respiratory disturbances in sleep apnea syndrome. Chest. 1996;109(2):395–399. doi: 10.1378/chest.109.2.395
  15. Padula WV, Miano MA, Kelley MA, et al. A cost-utility analysis of remote pulse-oximetry monitoring of patients with COVID-19. Value Health. 2022;25(6):890–896. doi: 10.1016/j.jval.2021.09.008
  16. Gootenberg DB, Kurtzman N, O’Mara T, et al. Developing a pulse oximetry home monitoring protocol for patients suspected with COVID-19 after emergency department discharge. BMJ Health Care Inform. 2021;28(1):e100330. doi: 10.1136/bmjhci-2021-100330
  17. Savushkina OI, Chernyak AV, Kameneva MYu, et al. Informativeness of impulse oscillometry in the detection of restrictive type ventilation disorders. Bulletin physiology and pathology of respiration. 2018;(67):8–16. (In Russ.). doi: 10.12737/article_5a9f258fe6d932.79474351
  18. Savushkina OI, Chernyak AV, Neklyudova GV. Legochnye funktsional’nye testy: ot teorii k praktike. Rukovodstvo dlya vrachei. Moscow: Strom; 2017. 192 p. (In Russ.).
  19. Dellacà RL, Santus P, Aliverti A, et al. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J. 2004;23(2):232–240. doi: 10.1183/09031936.04.00046804
  20. Savushkina OI, Chernyak AV, Kryukov EV, et al. Impulse oscillometry in the diagnosis of respiratory mechanics defects in chronic obstructive pulmonary disease. Pulmonologiya. 2020;30(3):285–294. (In Russ.). doi: 10.18093/0869-0189-2020-30-3-285-294
  21. Brashier B, Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe. 2015;11(1):57–65. doi: 10.1183/20734735.020514
  22. Kiryukhina LD, Kameneva MYu, Novikova LN. Possibilities of pulsed oscillometry in diagnostics of a restrictive version of ventilation disorders. International Research Journal. 2017;(5): 136–141. (In Russ.). doi: 10.23670/IRJ.2017.59.032
  23. Winter UJ, Gitt AK, Fritsch J, et al. Methodologic aspects of modern, computerized ergospirometry (CPX): ramp program, constant workload test and CO2 rebreathing method. Z Kardiol. 1994;83(3):13–26.
  24. Kryzhanovskaya SYu, Dudnik EN, Zapara MA, et al. Hypoxic conditioning procedures do not lead to excessive activation of oxidative stress in healthy subjects. Russian Journal of Physiology. 2019;105(1):89–99. (In Russ.). doi: 10.1134/S0869813919010047
  25. Goranchuk VV, Sapova NI, Ivanov AO. Gipoksiterapiya. Saint Petersburg: Ehlbi-SPb; 2003. 536 p. (In Russ.).
  26. Sirotinin NN. Znachenie gipoksii v geneze, profilaktike i lechenii prezhdevremennogo stareniya. Mekhanizmy stareniya. 1963. P. 341–351. (In Russ.).
  27. Solkin AA, Belyavsky NN, Kuznetsov VI, Nikolayeva AG. The main mechanisms of brain protection formation under the adaptation to hypoxia. Vitebsk medical jornal. 2012;(1):6–14. (In Russ.).
  28. Novozhilov AE. Dykhanie po Buteiko. Praktika i teoriya. Saint Petersburg; 2016. 111 p. (In Russ.).
  29. Abdullova NV, Aldarova SA, Shcherbinina NP. Efficiency of respiratory gymnastics of shooter in the pandemic of coronavirus. International journal of humanities and natural sciences. 2021; (9-2):6–8. (In Russ.). doi: 10.24412/2500-1000-2021-9-2-6-8
  30. Patent RUS No. 2123865/ 27.12.1998. Frolov VF. Sposob trenirovki dykhatel’noi sistemy. (In Russ.).
  31. Khurtsilava OG, Pluzhnikov NN, Nakatis AYa. Oksidativnyi stress i vospalenie: patogeneticheskoe partnerstvo. Saint Petersburg; 2012. 340 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Apparatus for conducting interval hypoxic therapy

Download (120KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies