The role of oxidative stress in the formation of adaptive processes in the body

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Oxidative stress (OS) occurs in various pathological processes, and acting as a nonspecific link in their pathogenesis. Less is known about its physiological role.

The aim of study. Analysis of the results of world literature data and our own research on the participation of oxidative stress in the formation of adaptation processes in the body, under the influence of unfavorable environmental factors.

Methods. Analysis of the results of studies published in international databases (Pubmed, Elsevier) and Russian concerning the physiological role of OS, published over the past 20 years.

Results. The article presents numerous information that OS acts as a nonspecific link in the body’s adaptation. The implementation of its physiological effects is associated with a change in the redox state of the cytoplasm and mitochondria of the cell, which leads to the reversible oxidation of intracellular proteins and contributes to the modulation of their properties. As a result of this, the synthesis changes and the manifestation of the activity of a number of intracellular proteins (enzymes, chaperones, transcription factors) that provide protection from the action of damaging factors is modulated.

Conclusion. The authors conclude that it is inappropriate to use antioxidants for the treatment and prevention of diseases whose pathogenesis is associated with the occurrence of moderate oxidative stress (oxidative eustress).

Full Text

Restricted Access

About the authors

Vadim V. Davydov

Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology

Author for correspondence.
Email: vaddavydov@mail.ru
ORCID iD: 0000-0002-3347-1832

professor of the department of biochemistry and molecular biology, Leading Researcher of the Laboratory of Biochemistry of Signaling Pathways, Doctor of Medical Sci., professor

 

Russian Federation, Ostrovityanova st., 1, Moscow, 117997; Dmitry Ulyanov st., 11, Moscow, 115478

Alexander Vy. Shestopalov

Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: al-shest@yandex.ru
ORCID iD: 0000-0002-1428-7706

Holder of the department of biochemistry and molecular biology, Holder of the Laboratory of Biochemistry of Signaling Pathways, Holder of the department of the Dmitry Rogachev National Medical Research Center, Doctor of Medical Sci., professor

Russian Federation, Ostrovityanova st., 1, Moscow, 117997; Dmitry Ulyanov st., 11, Moscow, 115478; Samory Mashela st., 1, Moscow, 117997

Sergey A. Roumiantsev

Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology

Email: s_roumiantsev@mail.ru
ORCID iD: 0000-0002-7418-0222

Holder of the department of oncology, hematology and radiation therapy, Deputy Director, Corresponding member of the Russian Academy of Sciences, Doctor of Medical Sci., professor

Russian Federation, Ostrovityanova st., 1, Moscow, 117997; Dmitry Ulyanov st., 11, Moscow, 115478

References

  1. Sies H., Bemdt C., Jones D.P. Oxidative Stress. Annu Rev Biochem. 2017; 86: 715–48. doi: 10.1146/annurev-biochem-061516-045037
  2. Miller I.P., Pavlović I., Poljšak B., Šuput D., Milisav I. Beneficial Role of ROS in Cell Survival: Moderate Increases in H2O2 Production Induced by Hepatocyte Isolation Mediate Stress Adaptation and Enhanced Survival. Antioxidants (Basel). 2019; 8 (10): 434. doi: 10.3390/antiox8100434
  3. Wilson C., Muñoz-Palma E., González-Billault C. From birth to death: A role for reactive oxygen species in neuronal development. Semin Cell Dev Biol. 2018; 80: 43–9. doi: 10.1016/j.semcdb.2017.09.012
  4. Jialin Li, Zhe Wang, Can Li , Yu Song, Yan Wang, Hai Bo, Yong Zhang. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells. 2022; 11 (13): 2086. doi: 10.3390/cells11132086.
  5. Ramirez A., Vázquez-Sánchez A.Y., Carrión-Robalino N., Camacho J. Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. Oxid Med Cell Longev. 2016; 2016: 3928714. doi: 10.1155/2016/3928714
  6. Roginsky V.A., Tashlitsky V.N., Skulachev V.P. Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging (Albany NY). 2009; 1 (5): 481–9. doi: 10.18632/aging.100049
  7. Ye Y., Li J., Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One. 2013; 8 (2): e56803. doi: 10.1371/journal.pone.0056803
  8. Myung S.K., Ju W., Cho B., Oh S.W., Park S.M. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ. 2013; 346: f10. doi: 10.1136/bmj.f10
  9. Baoyi Zhang, Cunyao Pan, Chong Feng, Changqing Yan, Yijing Yu, Zhaoli Chen, Changjiang Guo, Xinxing Wang. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022; 27 (1): 45–52. doi: 10.1080/13510002.2022.2046423
  10. Fuhrmann D.C., Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017; 12: 208–15. doi: 10.1016/j.redox.2017.02.012
  11. Lennicke C., Cochemé H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021; 81 (18): 3691–707. doi: 10.1016/j.molcel.2021.08.018
  12. Antonucci S., Lisa F.D., Kaludercic N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium. 2021; 94: 102344. doi: 10.1016/j.ceca.2020.102344
  13. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020; 21 (7): 363–83. doi: 10.1038/s41580-020-0230-3
  14. Wang R.S., Oldham W.M., Maron B.A., Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid Redox Signal. 2018; 29 (10): 953–72. doi: 10.1089/ars.2017.7256
  15. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017; 11: 613–9. doi: 10.1016/j.redox.2016.12.035
  16. Ježek P., Holendová B., Plecitá-Hlavatá L. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules. 2020; 10 (1): 93. doi: 10.3390/biom10010093
  17. Parvez S., Long M.J.C., Poganik J.R., Aye Y. Redox Signaling by Reactive Electrophiles and Oxidants. Chem Rev. 2018; 118 (18): 8798–888. doi: 10.1021/acs.chemrev.7b00698
  18. Sies H. Findings in redox biology: From H2O2 to oxidative stress. J. Biol. Chem. 2020; 295 (39): 13458–73. doi: 10.1074/jbc.X120.015651
  19. Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell. Biol. 2018; 217 (6): 1915–28. doi: 10.1083/jcb.201708007
  20. Andreyev A.Y., Kushnareva Y.E., Starkova N.N., Starkov A.A. Metabolic ROS Signaling: To Immunity and Beyond. Biochemistry (Mosc). 2020; 85 (12): 1650–67. doi: 10.1134/S0006297920120160
  21. Aslihan T.A., Suter D.M. The role of NADPH oxidases in neuronal development. Free Radic Biol Med. 2020; 154: 33–47. doi: 10.1016/j.freeradbiomed.2020.04.027
  22. Konno T., Melo E.P., Chambers J.E., Avezov E. Intracellular Sources of ROS/H2O2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells. 2021; 10 (2): 233. doi: 10.3390/cells10020233
  23. Roscoe J.M., Sevier C.S. Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells. 2020; 9 (10): 2314. doi: 10.3390/cells9102314
  24. Wu M.Y., Yiang G.T., Liao W.T., Tsai A.P., Cheng Y.L., Cheng P.W., Li C.Y., Li C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem. 2018; 46 (4): 1650–67. doi: 10.1159/000489241
  25. Garrido Ruiz D., Sandoval-Perez A., Rangarajan A.V., Gunderson E.L., Jacobson M.P. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Biochemistry. 2022; 61 (20): 2165–76. doi: 10.1021/acs.biochem.2c00349
  26. Groitl B., Jakob U. Thiol-based redox switches. Biochim Biophys Acta. 2014; 1844 (8): 1335–43. doi: 10.1016/j.bbapap.2014.03.007
  27. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015; 4: 180–3. doi: 10.1016/j.redox.2015.01.002
  28. Laskar A.A., Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev. 2019; 51 (1): 42–64. doi: 10.1080/03602532.2018.1555587
  29. Uchida K. 4-hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003; 42 (4): 318–43. doi: 10.1016/s0163-7827(03)00014-6
  30. Brown D.I., Griendling K.K. Regulation of Signal Transduction by Reactive Oxygen Species in the Cardiovascular System. Circ Res. 2015; 116: 531–49. doi: 10.1161/CIRCRESAHA.116.303584
  31. Плотников Е.Ю., Силачев Д.Н., Янкаускас С.С., Рокитская Т.И., Чупыркина А.А., Певзнер И.Б., Зорова Л.Д., Исаев Н.К., Антоненко Ю.Н., Скулачев В.П., Зоров Д.Б. Частичное разобщение дыхания и фосфорилирования как один из путей реализации нефро- и нейропротекторного действия проникающих катионов семейства SkQ. Биохимия. 2012; 77 (9): 1240–50. DOI :10.1134/S000629791209010. [Plotnikov E. Y., Silachev D. N., Jankauskas S. S., Rokitskaya T. I., Chupyrkina A. A., Pevzner I. B., Zorova L. D., Isaev N. K., Antonenko Y. N., Skulachev V. P., Zorov D. B. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and n europrotective effects of penetrating cations of the SkQ family. Biochemistry (Mosc). 2012; 77 (9): 1240–50 (in Russian)]
  32. Li J., Zhang Z., Bo H., Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med. 2024; 213: 409–25. doi: 10.1016/j.freeradbiomed.2024.01.036. Epub 2024 Jan 29. PMID: 38295887.
  33. Tossounian M.A., Zhang B., Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel). 2020; 9 (12): 1288. doi: 10.3390/antiox9121288
  34. Winterbourn C.C. Biological Production, Detection, and Fate of Hydrogen Peroxide. Antioxid Redox Signal. 2018; 29: 541–51. doi: 10.1089/ars.2017.7425
  35. Zhang H., Gong W., Wu S., Perrett S. Hsp70 in Redox Homeostasis. Cells. 2022; 11 (5): 829. doi: 10.3390/cells11050829
  36. Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015; 33: 8–13. doi: 10.1016/j.ceb.2014.09.010
  37. Zhang H.F., Wang J.H., Wang Y.L., Gao C., Gu Y.T., Huang J., Wang J.H., Zhang Z. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019; 18: 2853534. doi: 10.1155/2019/2853534
  38. Liu S., Pi J., Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol. 2022; 54: 102389. doi: 10.1016/j.redox.2022.102389
  39. Shaw P., Chattopadhyay A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J Cell Physiol. 2020; 235 (4): 3119–30. doi: 10.1002/jcp.29219
  40. Guo Z., Mo Z. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J. Tissue Eng Regen Med. 2020; 202014 (6): 869–83. doi: 10.1002/term.3053
  41. Hu B., Wei H., Song Y., Chen M., Fan Z., Qiu R., Zhu W., Xu W., Wang F. NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection. J. Virol. 2020; 94 (10): e00016-20. doi: 10.1128/JVI.00016-20
  42. Basse A.L., Isidor M.S., Winther S., Skjoldborg N.B. Regulation of glycolysis in brown adipocytes by HIF-1α. Sci Rep. 2017; 7 (1): 4052. doi: 10.1038/s41598-017-04246-y
  43. Zhao X., Liu L., Li R., Wei X., Luan W., Liu P., Zhao J. Hypoxia –inducible factor 1-α (HIF-1α) induces apoptosis of human uterosacral ligament fibroblasts through the death receptor and mitochondrial pathways. Med Sci Moit, 2018; 24: 8722–33. doi: 10.12659/MSM.913384
  44. Mylonis I., Simos G., Paraskeva I. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells. 2019; 8: E214. doi: 10.3390/cells8030214
  45. Shu S., Wang Y., Zheng M., Liu Z., Cai J., Tang C., Dong Z. Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells. 2019; 8 (3): 207. doi: 10.3390/cells8030207.
  46. Bassoy E.Y., Walch M., Martinvalet D. Reactive Oxygen Species: Do They Play a Role in Adaptive Immunity? Front Immunol. 2021; 12: 755856. doi: 10.3389/fimmu.2021.755856
  47. Меерсон Ф.З. Патогенез и предупреждение стрессорных и ишемических повреждений сердца. М.: Медицина, 1984; 270. [Meerson F.Z.Pathogenesis and prevention of ress and ischemi c injures of heart. M.: Medicina, 1984; 270 (in Russian)]
  48. Du Y., Demillard L.J., Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci. 2021; 287: 120106. doi: 10.1016/j.lfs.2021.120106
  49. Davydov V.V., Bozhkov A.I., Grabovetskaya E.R. Age-related peculiarities of change in content of free radical oxidation products in muscle during stress. Fron Biol. 2014; 9 (4): 283–6. doi: 10.1007/s11515-014-1315-1
  50. Podszun M.C., Chung J.Y., Ylaya K., Kleiner D.E., Hewitt S.M., Rotman Y. 4-HNE Immunohistochemistry and Image Analysis for Detection of Lipid Peroxidation in Human Liver Samples Using Vitamin E Treatment in NAFLD as a Proof of Concept. J Histochem Cytochem. 2020; 68 (9): 635–43. doi: 10.1369/0022155420946402
  51. Ene C.D., Georgescu S.R., Tampa M., Matei C., Mitran C.I., Mitran M.I., Penescu M.N., Nicolae I. Cellular Response against Oxidative Stress, a Novel Insight into Lupus Nephritis Pathogenesis. J. Pers Med. 2021; 11 (8): 693. doi: 10.3390/jpm11080693
  52. Van der Pol A., van Gilst W.H., Voors A., van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur. J. Heart Fail. 2019; 21 (4): 425–35. doi: 10.1002/ejhf.1320
  53. Davydov V.V., Bozhkov A.I., Dobaeva N.M. Possible role of alteration of aldehyde’s scavenger enzymes during aging. Exp Gerontol. 2004; 39 (1): 11–6. doi: 10.1016/j.exger.2003.08.009
  54. Davydov V.V. Age-dependent change in aldo-keto reductases composition in the blood of rats. Am. J. Biomed Life Sci. 2014; 2 (6–1): 1–4. doi: 10.11648/j.ajbls.s.2014020601.11

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oxidation residue of cysteine in the polypeptide chain of protein by ROS

Download (150KB)
3. Fig.2. The major pathways metabolism of residues of sulfenic acid in polypeptide chains of proteins

Download (233KB)
4. Fig. 3. The enzyme as sensors and messengers of cell response for effects of prooxidant factors

Download (125KB)
5. Fig. 4. Adaptive switching of glucose metabolism in the cell during changes of its redox-status

Download (2MB)
6. Fig. 5. Mechanisms of participation of oxidative stress in cell damage and its adaptation to injury under oxidative stress (-) – inhibition of processes during oxidative stress

Download (2MB)
7. Fig. 6. Feedback regulation of antioxidant system during oxidative stress

Download (81KB)
8. Fig. 7. Participation of carbonyl products of free radical oxidation in the injury effects of oxidative stress

Download (2MB)

Copyright (c) 2024 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies