Use of nanotechnology in the creation of targeted drugs for the treatment of oncological diseases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. To analyze current advances in nanotechnology applications for the development of targeted drugs in oncology, including their mechanisms of action and clinical application prospects.

Material and methods. A comprehensive analysis of scientific literature on nanotechnology applications in anti-cancer drug development was conducted. PubMed, Scopus, and Web of Science databases were used for the period 2000–2024.

Results. The main types of nanoparticles used in oncology, their physicochemical properties, and tumor delivery mechanisms were systematized. The principles of the EPR effect and strategies for improving targeted drug delivery were described. Modern approaches to nanoparticle modification for enhancing their therapeutic efficacy were analyzed.

Conclusion. Nanotechnology represents a promising direction in the development of anti-cancer drugs, enabling improved therapy efficacy and safety. The use of drug delivery nanosystems helps overcome biological barriers and enhance pharmacokinetic parameters of drugs.

全文:

受限制的访问

作者简介

Pavel Seliverstov

Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226

Associate Professor, 2nd Department (Advanced Medical Therapy)

俄罗斯联邦, Lebedeva St., 6, Saint Petersburg, 194044

Anastasia Baksheeva

Peoples' Friendship University of Russia named after Patrice Lumumba

Email: baksheeva.anastasiya@mail.ru
ORCID iD: 0009-0002-0293-5419

6th year student

俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198

Polina Koretskaya

Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation

Email: pollyligman.q@gmail.com
ORCID iD: 0009-0007-5563-6785

5th year student

俄罗斯联邦, Ostrovityanova St., 1, Moscow, 117513

Izattillo Abdusattarov

FSBEI HE “Orenburg State Medical University” Ministry of Healthcare of the Russian Federation

Email: pollyligman.q@gmail.com
ORCID iD: 0009-0007-2928-5141

6th year student

俄罗斯联邦, Orenburg, Sovetskaya St., build. 6, Orenburg Region, 460014

参考

  1. Zhang Y., Li M., Gao X., Chen Y., Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 2019; 12 (1): 137. doi: 10.1186/s13045-019-0833-3
  2. Slamon D., Eiermann W., Robert N., Pienkowski T., Martin M., Press M., Mackey J. et al. Adjuvant trastuzumab in HER2 positive breast cancer. N. Engl. J. Med. 2011; 365 (14): 1273–83. doi: 10.1056/NEJMoa0910383
  3. Druker B.J., Guilhot F., O'Brien S.G., Gathmann I., Kantarjian H., Gattermann N., Deininger M.W. et al. Five year follow up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006; 355 (23): 2408–17. doi: 10.1056/NEJMoa062867
  4. Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non small cell lung cancer to gefitinib. N. Engl. J. Med. 2004; 350 (21): 2129–39. doi: 10.1056/NEJMoa040938
  5. Hurwitz H., Fehrenbacher L., Novotny W., Cartwright T., Hainsworth J., Heim W., Berlin J. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004; 350 (23): 2335–42. doi: 10.1056/NEJMoa032691
  6. Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C.L. et al. Olaparib maintenance therapy in platinum sensitive relapsed ovarian cancer. N. Engl. J. Med. 2012; 366 (15): 1382–92. doi: 10.1056/NEJMoa1105535
  7. Barenholz Y. Doxil – the first FDA approved nano drug: lessons learned. J. Control. Release. 2012; 160 (2): 117–34. doi: 10.1016/j.jconrel.2012.03.020
  8. Gradishar W.J., Tjulandin S., Davidson N., Shaw H., Desai N., Bhar P., Hawkins M. et al. Phase III trial of nanoparticle albumin bound paclitaxel compared with polyethylated castor oil based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005; 23 (31): 7794–803. doi: 10.1200/JCO.2005.04.937
  9. Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307 (5709): 538–44. doi: 10.1126/science.1104274
  10. Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010; 9 (8): 615–27. doi: 10.1038/nrd2591
  11. Jokerst J.V., Lobovkina T., Zare R.N., Gambhir S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011; 6 (4): 715–28. doi: 10.2217/nnm.11.19
  12. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003; 36 (13): R167. doi: 10.1088/0022-3727/36/13/201
  13. Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46 (12): 6387–92.
  14. Hobbs S.K., Monsky W.L., Yuan F., Roberts W.G., Griffith L., Torchilin V.P., Jain R.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA. 1998; 95 (8): 4607–12. doi: 10.1073/pnas.95.8.4607
  15. Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 2000; 65 (1–2): 271–84. doi: 10.1016/s0168-3659(99)00248-5
  16. Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307 (5706): 58–62. doi: 10.1126/science.1104819
  17. Heldin C.H., Rubin K., Pietras K., Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer. 2004; 4 (10): 806–13. doi: 10.1038/nrc1456
  18. Ganta S., Devalapally H., Shahiwala A., Amiji M. A review of stimuli responsive nanocarriers for drug and gene delivery. J. Control. Release. 2008; 126 (3): 187–204. doi: 10.1016/j.jconrel.2007.12.017
  19. Heitz F., Morris M.C., Divita G. Twenty years of cell penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 2009; 157 (2): 195–206. doi: 10.1111/j.1476-5381.2009.00057.x
  20. Bangham A.D., Standish M.M., Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965; 13 (1): 238–52. doi: 10.1016/S0022-2836(65)80093-6
  21. Drummond D.C., Zignani M., Leroux J.C. Current status of pH sensitive liposomes in drug delivery. Prog. Lipid Res. 2000; 39 (5): 409–60. doi: 10.1016/s0163-7827(00)00011-4
  22. Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 2003; 42 (5): 419–36. doi: 10.2165/00003088-200342050-00002
  23. Wang-Gillam A., Li C.P., Bodoky G., Dean A., Shan Y.S., Jameson G., Macarulla T. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine based therapy (NAPOLI-1): a global, randomised, open label, phase 3 trial. Lancet. 2016; 387 (10018): 545–57. doi: 10.1016/S0140-6736(15)00986-1
  24. Walsh T.J., Finberg R.W., Arndt C., Hiemenz J., Schwartz C., Bodensteiner D., Pappas P. et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N. Engl. J. Med. 1999; 340 (10): 764–71. doi: 10.1056/NEJM199903113401004
  25. Lancet J.E., Uy G.L., Cortes J.E., Newell L.F., Lin T.L., Ritchie E.K., Stuart R.K. et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 2018; 36 (26): 2684–92. doi: 10.1200/JCO.2017.77.6112
  26. Kim T.Y., Kim D.W., Chung J.Y., Shin S.G., Kim S.C., Heo D.S., Kim N.K. et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor free, polymeric micelle formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 2004; 10 (11): 3708–16. doi: 10.1158/1078-0432.CCR-03-0655
  27. Anderson J.M., Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012; 64: 72–82. doi: 10.1016/j.addr.2012.09.004
  28. Davis M.E., Zuckerman J.E., Choi C.H.J., Seligson D., Tolcher A., Alabi C.A., Yen Y. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464 (7291): 1067–70. doi: 10.1038/nature08956
  29. Boussif O., Lezoualc'h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA. 1995; 92 (16): 7297–301. doi: 10.1073/pnas.92.16.7297
  30. Pack D.W., Hoffman A.S., Pun S., Stayton P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005; 4 (7): 581–93. doi: 10.1038/nrd1775
  31. Whitehead K.A., Langer R., Anderson D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009; 8 (2): 129–38. doi: 10.1038/nrd2742
  32. Young C., Schluep T., Hwang J., Martin S. CRLX101 (formerly IT-101) – A Novel Nanopharmaceutical of Camptothecin in Clinical Development. Curr. Bioact. Compd. 2011; 7 (1): 8–14. doi: 10.2174/157340711795163802
  33. Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Préat V. PLGA based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012; 161 (2): 505–22. doi: 10.1016/j.jconrel.2012.01.043
  34. Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008; 23 (3): 217–28. doi: 10.1007/s10103-007-0470-x
  35. Toth G.B., Varallyay C.G., Horvath A., Bashir M.R., Choyke P.L., Daldrup-Link H.E., Dosa E. et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017; 92 (1): 47–66. doi: 10.1016/j.kint.2016.12.037
  36. Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011; 103 (2): 317–24. doi: 10.1007/s11060-010-0389-0
  37. Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011; 40 (3): 1647–71. doi: 10.1039/c0cs00018c
  38. Hodi F.S., O'Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010; 363 (8): 711–23. doi: 10.1056/NEJMoa1003466
  39. Kumar A., Zhang X., Liang X.J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013; 31 (5): 593–606. doi: 10.1016/j.biotechadv.2012.10.002
  40. Xie J., Lee S., Chen X. Nanoparticle based theranostic agents. Adv. Drug Deliv. Rev. 2010; 62 (11): 1064–79. doi: 10.1016/j.addr.2010.07.009
  41. Bonvalot S., Rutkowski P.L., Thariat J., Carrère S., Ducassou A., Sunyach M.P., Agoston P. et al. NBTXR3, a first in class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019; 20 (8): 1148–59. doi: 10.1016/S1470-2045(19)30326-2
  42. Wood B.J., Poon R.T., Locklin J.K., Dreher M.R., Ng K.K., Eugeni M., Seidel G. et al. Phase I study of heat deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J. Vasc. Interv. Radiol. 2012; 23 (2): 248–55. doi: 10.1016/j.jvir.2011.10.018
  43. Patel N.R., Pattni B.S., Abouzeid A.H., Torchilin V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev. 2013; 65 (13–14): 1748–62. doi: 10.1016/j.addr.2013.08.004
  44. Riley R.S., Day E.S. Gold nanoparticle mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017; 9 (4): e1449. doi: 10.1002/wnan.1449
  45. Choi Y.E., Kwak J.W., Park J.W. Nanotechnology for early cancer detection. Sensors (Basel). 2010; 10 (1): 428–55. doi: 10.3390/s100100428
  46. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016; 1: 16014. doi: 10.1038/natrevmats.2016.14
  47. Ishida T., Kashima S., Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J. Control. Release. 2008; 126 (2): 162–5. doi: 10.1016/j.jconrel.2007.11.009
  48. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 2014; 71: 2–14. doi: 10.1016/j.addr.2013.08.008
  49. Resnik D.B., Tinkle S.S. Ethics in nanomedicine. Nanomedicine (Lond). 2007; 2 (3): 345–50. doi: 10.2217/17435889.2.3.345
  50. Etheridge M.L., Campbell S.A., Erdman A.G., Haynes C.L., Wolf S.M., McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013; 9 (1): 1–14. doi: 10.1016/j.nano.2012.05.013

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2024