Use of nanotechnology in the creation of targeted drugs for the treatment of oncological diseases
- 作者: Seliverstov P.V.1, Baksheeva A.D.2, Koretskaya P.S.3, Abdusattarov I.Z.4
-
隶属关系:
- Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation
- Peoples' Friendship University of Russia named after Patrice Lumumba
- Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
- FSBEI HE “Orenburg State Medical University” Ministry of Healthcare of the Russian Federation
- 期: 卷 22, 编号 6 (2024)
- 页面: 40-51
- 栏目: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/677288
- DOI: https://doi.org/10.29296/24999490-2024-06-05
- ID: 677288
如何引用文章
详细
Objective. To analyze current advances in nanotechnology applications for the development of targeted drugs in oncology, including their mechanisms of action and clinical application prospects.
Material and methods. A comprehensive analysis of scientific literature on nanotechnology applications in anti-cancer drug development was conducted. PubMed, Scopus, and Web of Science databases were used for the period 2000–2024.
Results. The main types of nanoparticles used in oncology, their physicochemical properties, and tumor delivery mechanisms were systematized. The principles of the EPR effect and strategies for improving targeted drug delivery were described. Modern approaches to nanoparticle modification for enhancing their therapeutic efficacy were analyzed.
Conclusion. Nanotechnology represents a promising direction in the development of anti-cancer drugs, enabling improved therapy efficacy and safety. The use of drug delivery nanosystems helps overcome biological barriers and enhance pharmacokinetic parameters of drugs.
全文:

作者简介
Pavel Seliverstov
Federal State Budgetary Educational Institution of Higher Education “S.M. Kirov Military Medical Academy” of the Ministry of Health of the Russian Federation
编辑信件的主要联系方式.
Email: seliverstov-pv@yandex.ru
ORCID iD: 0000-0001-5623-4226
Associate Professor, 2nd Department (Advanced Medical Therapy)
俄罗斯联邦, Lebedeva St., 6, Saint Petersburg, 194044Anastasia Baksheeva
Peoples' Friendship University of Russia named after Patrice Lumumba
Email: baksheeva.anastasiya@mail.ru
ORCID iD: 0009-0002-0293-5419
6th year student
俄罗斯联邦, Miklukho-Maklaya St., 6, Moscow, 117198Polina Koretskaya
Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
Email: pollyligman.q@gmail.com
ORCID iD: 0009-0007-5563-6785
5th year student
俄罗斯联邦, Ostrovityanova St., 1, Moscow, 117513Izattillo Abdusattarov
FSBEI HE “Orenburg State Medical University” Ministry of Healthcare of the Russian Federation
Email: pollyligman.q@gmail.com
ORCID iD: 0009-0007-2928-5141
6th year student
俄罗斯联邦, Orenburg, Sovetskaya St., build. 6, Orenburg Region, 460014参考
- Zhang Y., Li M., Gao X., Chen Y., Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 2019; 12 (1): 137. doi: 10.1186/s13045-019-0833-3
- Slamon D., Eiermann W., Robert N., Pienkowski T., Martin M., Press M., Mackey J. et al. Adjuvant trastuzumab in HER2 positive breast cancer. N. Engl. J. Med. 2011; 365 (14): 1273–83. doi: 10.1056/NEJMoa0910383
- Druker B.J., Guilhot F., O'Brien S.G., Gathmann I., Kantarjian H., Gattermann N., Deininger M.W. et al. Five year follow up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006; 355 (23): 2408–17. doi: 10.1056/NEJMoa062867
- Lynch T.J., Bell D.W., Sordella R., Gurubhagavatula S., Okimoto R.A., Brannigan B.W., Harris P.L. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non small cell lung cancer to gefitinib. N. Engl. J. Med. 2004; 350 (21): 2129–39. doi: 10.1056/NEJMoa040938
- Hurwitz H., Fehrenbacher L., Novotny W., Cartwright T., Hainsworth J., Heim W., Berlin J. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004; 350 (23): 2335–42. doi: 10.1056/NEJMoa032691
- Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C.L. et al. Olaparib maintenance therapy in platinum sensitive relapsed ovarian cancer. N. Engl. J. Med. 2012; 366 (15): 1382–92. doi: 10.1056/NEJMoa1105535
- Barenholz Y. Doxil – the first FDA approved nano drug: lessons learned. J. Control. Release. 2012; 160 (2): 117–34. doi: 10.1016/j.jconrel.2012.03.020
- Gradishar W.J., Tjulandin S., Davidson N., Shaw H., Desai N., Bhar P., Hawkins M. et al. Phase III trial of nanoparticle albumin bound paclitaxel compared with polyethylated castor oil based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005; 23 (31): 7794–803. doi: 10.1200/JCO.2005.04.937
- Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307 (5709): 538–44. doi: 10.1126/science.1104274
- Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010; 9 (8): 615–27. doi: 10.1038/nrd2591
- Jokerst J.V., Lobovkina T., Zare R.N., Gambhir S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011; 6 (4): 715–28. doi: 10.2217/nnm.11.19
- Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003; 36 (13): R167. doi: 10.1088/0022-3727/36/13/201
- Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46 (12): 6387–92.
- Hobbs S.K., Monsky W.L., Yuan F., Roberts W.G., Griffith L., Torchilin V.P., Jain R.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA. 1998; 95 (8): 4607–12. doi: 10.1073/pnas.95.8.4607
- Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 2000; 65 (1–2): 271–84. doi: 10.1016/s0168-3659(99)00248-5
- Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307 (5706): 58–62. doi: 10.1126/science.1104819
- Heldin C.H., Rubin K., Pietras K., Ostman A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer. 2004; 4 (10): 806–13. doi: 10.1038/nrc1456
- Ganta S., Devalapally H., Shahiwala A., Amiji M. A review of stimuli responsive nanocarriers for drug and gene delivery. J. Control. Release. 2008; 126 (3): 187–204. doi: 10.1016/j.jconrel.2007.12.017
- Heitz F., Morris M.C., Divita G. Twenty years of cell penetrating peptides: from molecular mechanisms to therapeutics. Br. J. Pharmacol. 2009; 157 (2): 195–206. doi: 10.1111/j.1476-5381.2009.00057.x
- Bangham A.D., Standish M.M., Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965; 13 (1): 238–52. doi: 10.1016/S0022-2836(65)80093-6
- Drummond D.C., Zignani M., Leroux J.C. Current status of pH sensitive liposomes in drug delivery. Prog. Lipid Res. 2000; 39 (5): 409–60. doi: 10.1016/s0163-7827(00)00011-4
- Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 2003; 42 (5): 419–36. doi: 10.2165/00003088-200342050-00002
- Wang-Gillam A., Li C.P., Bodoky G., Dean A., Shan Y.S., Jameson G., Macarulla T. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine based therapy (NAPOLI-1): a global, randomised, open label, phase 3 trial. Lancet. 2016; 387 (10018): 545–57. doi: 10.1016/S0140-6736(15)00986-1
- Walsh T.J., Finberg R.W., Arndt C., Hiemenz J., Schwartz C., Bodensteiner D., Pappas P. et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N. Engl. J. Med. 1999; 340 (10): 764–71. doi: 10.1056/NEJM199903113401004
- Lancet J.E., Uy G.L., Cortes J.E., Newell L.F., Lin T.L., Ritchie E.K., Stuart R.K. et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol. 2018; 36 (26): 2684–92. doi: 10.1200/JCO.2017.77.6112
- Kim T.Y., Kim D.W., Chung J.Y., Shin S.G., Kim S.C., Heo D.S., Kim N.K. et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor free, polymeric micelle formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 2004; 10 (11): 3708–16. doi: 10.1158/1078-0432.CCR-03-0655
- Anderson J.M., Shive M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012; 64: 72–82. doi: 10.1016/j.addr.2012.09.004
- Davis M.E., Zuckerman J.E., Choi C.H.J., Seligson D., Tolcher A., Alabi C.A., Yen Y. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010; 464 (7291): 1067–70. doi: 10.1038/nature08956
- Boussif O., Lezoualc'h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA. 1995; 92 (16): 7297–301. doi: 10.1073/pnas.92.16.7297
- Pack D.W., Hoffman A.S., Pun S., Stayton P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005; 4 (7): 581–93. doi: 10.1038/nrd1775
- Whitehead K.A., Langer R., Anderson D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009; 8 (2): 129–38. doi: 10.1038/nrd2742
- Young C., Schluep T., Hwang J., Martin S. CRLX101 (formerly IT-101) – A Novel Nanopharmaceutical of Camptothecin in Clinical Development. Curr. Bioact. Compd. 2011; 7 (1): 8–14. doi: 10.2174/157340711795163802
- Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Préat V. PLGA based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012; 161 (2): 505–22. doi: 10.1016/j.jconrel.2012.01.043
- Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008; 23 (3): 217–28. doi: 10.1007/s10103-007-0470-x
- Toth G.B., Varallyay C.G., Horvath A., Bashir M.R., Choyke P.L., Daldrup-Link H.E., Dosa E. et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017; 92 (1): 47–66. doi: 10.1016/j.kint.2016.12.037
- Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H. et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011; 103 (2): 317–24. doi: 10.1007/s11060-010-0389-0
- Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011; 40 (3): 1647–71. doi: 10.1039/c0cs00018c
- Hodi F.S., O'Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010; 363 (8): 711–23. doi: 10.1056/NEJMoa1003466
- Kumar A., Zhang X., Liang X.J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013; 31 (5): 593–606. doi: 10.1016/j.biotechadv.2012.10.002
- Xie J., Lee S., Chen X. Nanoparticle based theranostic agents. Adv. Drug Deliv. Rev. 2010; 62 (11): 1064–79. doi: 10.1016/j.addr.2010.07.009
- Bonvalot S., Rutkowski P.L., Thariat J., Carrère S., Ducassou A., Sunyach M.P., Agoston P. et al. NBTXR3, a first in class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019; 20 (8): 1148–59. doi: 10.1016/S1470-2045(19)30326-2
- Wood B.J., Poon R.T., Locklin J.K., Dreher M.R., Ng K.K., Eugeni M., Seidel G. et al. Phase I study of heat deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J. Vasc. Interv. Radiol. 2012; 23 (2): 248–55. doi: 10.1016/j.jvir.2011.10.018
- Patel N.R., Pattni B.S., Abouzeid A.H., Torchilin V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev. 2013; 65 (13–14): 1748–62. doi: 10.1016/j.addr.2013.08.004
- Riley R.S., Day E.S. Gold nanoparticle mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017; 9 (4): e1449. doi: 10.1002/wnan.1449
- Choi Y.E., Kwak J.W., Park J.W. Nanotechnology for early cancer detection. Sensors (Basel). 2010; 10 (1): 428–55. doi: 10.3390/s100100428
- Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016; 1: 16014. doi: 10.1038/natrevmats.2016.14
- Ishida T., Kashima S., Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J. Control. Release. 2008; 126 (2): 162–5. doi: 10.1016/j.jconrel.2007.11.009
- Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 2014; 71: 2–14. doi: 10.1016/j.addr.2013.08.008
- Resnik D.B., Tinkle S.S. Ethics in nanomedicine. Nanomedicine (Lond). 2007; 2 (3): 345–50. doi: 10.2217/17435889.2.3.345
- Etheridge M.L., Campbell S.A., Erdman A.G., Haynes C.L., Wolf S.M., McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013; 9 (1): 1–14. doi: 10.1016/j.nano.2012.05.013
补充文件
