Molecular mechanisms and pharmacogenetic determinants of II–III generation antihistamines efficacy in allergic bronchial asthma: personalized therapy prospects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Allergic bronchial asthma (BA) is accompanied by activation of histamine H1/H4 receptors and variable response to antihistamines.

The aim of this review is to analyze the molecular mechanisms of action of second- and third-generation antihistamine drugs, their pharmacokinetic features and pharmacogenetic aspects of application in bronchial asthma, as well as prospects for developing new drugs with improved characteristics.

Methods. Narrative review of the literature (PubMed/Scopus, 2019–2024), including data from cryo-EM structures of the H4 receptor, single-cell RNA-seq profiles of bronchial epithelium and clinical pharmacogenetic studies of the CYP family (41 sources).

Results. Key signaling pathways (FcεRI–MAPK/NF-κB, IL-13/STAT6) indirectly targeted by H1 blockers have been identified. Increased HRH4 expression in IL-13^high Th2 clusters has been shown to correlate with asthma severity. Modern cryo-EM models of H4R have allowed us to refine the architecture of binding sites and optimize the design of promising ligands. CYP2D6 and ABCB1 polymorphisms account for up to 30–50% of interindividual variability in plasma concentrations of loratadine/desloratadine and bilastine according to clinical cohort data.

Conclusion. Integration of omics data and pharmacogenetic testing opens the way to targeted and personalized asthma therapy with antihistamines.

全文:

受限制的访问

作者简介

Elena Borodulina

Federal State Budgetary Educational Institution of Higher Education “Samara State Medical University” of the Ministry of Healthcare of the Russian Federation

编辑信件的主要联系方式.
Email: borodulinbe@yandex.ru
ORCID iD: 0000-0002-3063-1538

Doctor of Medical Sciences, Professor, Head of the Department of Phthisiology and Pulmonology

俄罗斯联邦, Chapaevskaya, 99, Samara, 443099

Elena Yakovleva

Federal State Budgetary Educational Institution of Higher Education “Samara State Medical University” of the Ministry of Healthcare of the Russian Federation

Email: elena130894@mail.ru
ORCID iD: 0000-0003-1858-5206

Candidate of Medical Sciences, Assistant of the Department of Phthisiology and Pulmonology

俄罗斯联邦, Chapaevskaya, 99, Samara, 443099

Boris Borodulin

Federal State Budgetary Educational Institution of Higher Education “Samara State Medical University” of the Ministry of Healthcare of the Russian Federation

Email: borodulinbe@yandex.ru
ORCID iD: 0000-0002-8847-9831

Doctor of Medical Sciences, Professor; Professor of the Department of Phthisiology and Pulmonology

俄罗斯联邦, Chapaevskaya, 99, Samara, 443099

Elena Gladunova

Federal State Budgetary Educational Institution of Higher Education “Samara State Medical University” of the Ministry of Healthcare of the Russian Federation

Email: e.p.gladunova@samsmu.ru
ORCID iD: 0000-0002-8137-7197

Doctor of Pharmaceutical Sciences, Professor; Professor of the Department of Pharmacy Management and Economics

俄罗斯联邦, Chapaevskaya, 99, Samara, 443099

Sevara Marchenko

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: marchenko_s_d@staff.sechenov.ru
ORCID iD: 0000-0002-0177-6826

Candidate of Pharmaceutical Sciences, Associate Professor of the Department of Organization and Management in the Field of Drug Circulation, Institute of Professional Education

俄罗斯联邦, Trubetskaya str., 8, build. 2, Moscow, 119048

Olga Krylova

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: krylova_o_v@staff.sechenov.ru
ORCID iD: 0000-0002-0552-639X

Candidate of Pharmaceutical Sciences, Associate Professor of the Department of Pharmacy, A.P. Nelyubin Institute of Pharmacy

俄罗斯联邦, Trubetskaya str., 8, build. 2, Moscow, 119048

Elza Mamontova

Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation

Email: elza.mamontova@mail.ru
ORCID iD: 0000-0001-8199-2053

Candidate of Pedagogical Sciences, Associate Professor of the Department of Pharmacy, Institute of Pharmacy and Medical Chemistry

俄罗斯联邦, Ostrovityanova str., 1, Moscow, 117997

Anastasia Rekalo

Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation

Email: rekalonastya@gmail.com
ORCID iD: 0009-0008-7211-4134

5th year student

俄罗斯联邦, Ostrovityanova str., 1, Moscow, 117997

Zarina Minnullina

Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation

Email: zarinam93@mail.ru
ORCID iD: 0009-0006-7867-4461

6th year student

俄罗斯联邦, Ostrovityanova str., 1, Moscow, 117997

Bella Bagirova

Federal State Budgetary Educational Institution of Higher Education “North Caucasian State Academy”

Email: gm2112@mail.ru
ORCID iD: 0009-0008-0627-5167

6th year student, Medical Institute

俄罗斯联邦, Stavropolskaya St., 36, Cherkessk, Karachay-Cherkess Republic, 369001

Alana Salpagarova

Federal State Budgetary Educational Institution of Higher Education “North Caucasian State Academy”

Email: alanasalpagarova3@gmail.ru
ORCID iD: 0009-0000-8946-612X

6th year student, Medical Institute

俄罗斯联邦, Stavropolskaya St., 36, Cherkessk, Karachay-Cherkess Republic, 369001

参考

  1. Lambrecht B.N., Hammad H. The immunology of asthma. Nat Immunol. 2015; 16 (1): 45–56. doi: 10.1038/ni.3049
  2. Al-Maamari A., Sultan M., Ding S., Yuxin D., Wang M.Y., Su S. Mechanisms and implications of histamine-induced reactions and complications. Allergol Immunopathol (Madr). 2025; 53 (3): 122–39. doi: 10.15586/aei.v53i3.1272
  3. Tiligada E., Stefanaki C., Ennis M., Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther. 2024; 263: 108722. doi: 10.1016/j.pharmthera.2024.108722
  4. Simons F.E., Simons K.J. Histamine and H1-antihistamines: celebrating a century of progress. J. Allergy Clin Immunol. 2011; 128 (6): 1139–50.e4. doi: 10.1016/j.jaci.2011.09.005
  5. Thurmond R.L., Gelfand E.W., Dunford P.J. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov. 2008; 7 (1): 41–53. doi: 10.1038/nrd2465
  6. Nikolouli E., Mommert S., Dawodu D.M. et al. The stimulation of TH2 cells results in increased IL-5 and IL-13 production via the H4 receptor. Allergy. 2024; 79 (8): 2186–96. doi: 10.1111/all.16182
  7. Xia, R., Shi, S., Xu, Z. et al. Structural basis of ligand recognition and design of antihistamines targeting histamine H4 receptor. Nat Commun. 2024; 15: 2493. https://doi.org/10.1038/s41467-024-46840-5
  8. Staub A.M., Bovet D. Action de la thymoxyethyldiethylamine (925 F) et des ethers phenoliquers sur le choc anaphylactique du cobaye. Compt Rend Soc Biol. 1937; 125: 818–23.
  9. Church M.K., Church D.S. Pharmacology of antihistamines. Indian J. Dermatol. 2013; 58 (3): 219–24. doi: 10.4103/0019-5154.110832
  10. Galli S.J., Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012; 18 (5): 693–704. doi: 10.1038/nm.2755
  11. Ahmad S., Israf D.A., Lajis N.H. et al. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood. Eur. J. Pharmacol. 2006; 538 (1–3): 188–94. doi: 10.1016/j.ejphar.2006.03.070
  12. Song Y., Qu R., Zhu S., Zhang R., Ma S. Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathways in primary microglia. Phytother Res. 2012; 26 (10): 1528–33. doi: 10.1002/ptr.4614
  13. Goenka S., Kaplan M.H. Transcriptional regulation by STAT6. Immunol Res. 2011; 50 (1): 87–96. doi: 10.1007/s12026-011-8205-2
  14. Tillement J.P., Testa B., Brée F. Compared pharmacological characteristics in humans of racemic cetirizine and levocetirizine, two histamine H1-receptor antagonists. Biochem Pharmacol. 2003; 66 (7): 1123–6. doi: 10.1016/s0006-2952(03)00558-6
  15. Sánchez-Borges M., Caballero-Fonseca F., Capriles-Hulett A., González-Aveledo L. Hypersensitivity reactions to non-steroidal anti-inflammatory drugs: an update. Pharmaceuticals (Basel). 2010; 3 (1): 10–8. doi: 10.3390/ph3010010
  16. Molimard M., Diquet B., Benedetti M.S. Comparison of pharmacokinetics and metabolism of desloratadine, fexofenadine, levocetirizine and mizolastine in humans. Fundam Clin Pharmacol. 2004; 18 (4): 399–411. doi: 10.1111/j.1472-8206.2004.00254.x
  17. Polli J.W., Baughman T.M., Humphreys J.E. et al. P-glycoprotein influences the brain concentrations of cetirizine (Zyrtec), a second-generation non-sedating antihistamine. J. Pharm Sci. 2003; 92 (10): 2082–9. doi: 10.1002/jps.10453
  18. Wang Y.H., Cai L. Pharmacogenomics-guided advances in antihistamine therapy. Clin Rev Allergy Immunol. 2021; 61 (3): 293–309. doi: 10.1007/s12016-021-08851-8
  19. Li Q, Wu YE, Wang K, Shi HY, Zhou Y, Zheng Y, Hao GX, Yang YL, Su LQ, Wang WQ, Yang XM, Zhao W. Developmental Pharmacogenetics of CYP2D6 in Chinese Children: Loratadine as a Substrate Drug. Front Pharmacol. 2021; 12: 657287. doi: 10.3389/fphar.2021.657287. PMID: 34295246; PMCID: PMC8292113.
  20. De Sutter A.I., Saraswat A., van Driel M.L. Antihistamines for the common cold. Cochrane Database Syst Rev. 2015; 2015 (11): CD009345. doi: 10.1002/14651858.CD009345.pub2
  21. Garcia-Erce P., et al. Multi-omics endotyping of allergic asthma reveals histamine receptor pathway heterogeneity. Front Immunol. 2022; 13: 988573. doi: 10.3389/fimmu.2022.988573
  22. Strother R.M., et al. Point-of-care pharmacogenomics implementation in clinical decision support systems. Clin Pharmacol Ther. 2023; 113 (4): 891–9. doi: 10.1002/cpt.2876
  23. Rajasekhar K., et al. Structural insights into H4 receptor-selective antagonists and their therapeutic potential. Br. J. Pharmacol. 2024; 181 (8): 1234–48. doi: 10.1111/bph.15999Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005; 5 (1): 6–13. doi: 10.1038/sj.tpj.6500285
  24. Dresser G.K., Bailey D.G., Leake B.F. et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 2002; 71 (1): 11–20. doi: 10.1067/mcp.2002.121152
  25. Devillier P., Roche N., Faisy C. Clinical pharmacokinetics and pharmacodynamics of desloratadine, fexofenadine and levocetirizine: a comparative review. Clin Pharmacokinet. 2008; 47 (4): 217–30. doi: 10.2165/00003088-200847040-00001
  26. Preuss C.V., Wood T.C., Szumlanski C.L. et al. Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity. Mol Pharmacol. 1998; 53 (4): 708–17. doi: 10.1124/mol.53.4.708
  27. Zhang M., Thurmond R.L., Dunford P.J. The histamine H(4) receptor: a novel modulator of inflammatory and immune disorders. Pharmacol Ther. 2007; 113 (3): 594–606. doi: 10.1016/j.pharmthera.2006.11.008
  28. Sağlam-Çifci E., Güleç İ., Şengelen A. et al. The H4R antagonist, JNJ-7777120 treatments ameliorate mild traumatic brain injury by reducing oxidative damage, inflammatory and apoptotic responses through blockage of the ERK1/2/NF-κB pathway in a rat model. Exp Neurol. 2025; 385: 115133. doi: 10.1016/j.expneurol.2024.115133
  29. Karcz T., Szczepańska K., Mogilski S. et al. Guanidine Derivative ADS1017, a Potent Histamine H(3) Receptor Antagonist with Promising Analgesic Activity and Satisfactory Safety Profile. ACS Chem Neurosci. 2024; 15 (24): 4441–57. doi: 10.1021/acschemneuro.4c00480
  30. Jin B.H., Hong T., Yoo B.W. et al. Pharmacokinetics, pharmacodynamics, and safety of izuforant, an H4R inhibitor, in healthy subjects: A phase I single and multiple ascending dose study. Clin Transl Sci. 2024; 17 (10): e70032. doi: 10.1111/cts.70032
  31. Kwon J.W., Lee K., Kim S.W. et al. Therapeutic potential of histamine H(4) receptor antagonist as a preventive treatment for diabetic retinopathy in mice. Sci Rep. 2024; 14 (1): 22664. doi: 10.1038/s41598-024-72166-9
  32. Stasiak A., Honkisz-Orzechowska E., Gajda Z. et al. AR71, Histamine H(3) Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int. J. Mol. Sci. 2024; 25 (15): 8035. doi: 10.3390/ijms25158035
  33. Dunford P.J., O’Donnell N., Riley J.P. et al. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J. Immunol. 2006; 176 (11): 7062–70. doi: 10.4049/jimmunol.176.11.7062
  34. Coruzzi G., Adami M., Guaita E. et al. Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur. J. Pharmacol. 2007; 563 (1–3): 240–4. doi: 10.1016/j.ejphar.2007.02.026
  35. Zhang H., Han G.W., Batyuk A. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature. 2019; 573 (7772): 55–9. doi: 10.1038/s41586-019-1520-9
  36. Adachi T., Aoki Y., Yoshida H. et al. Reduction of Mg2+ block of synaptic NMDA receptors in developing rat substantia nigra dopaminergic neurons. J. Physiol. 2010; 588 (Pt 21): 4221–37. doi: 10.1113/jphysiol.2010.193334
  37. Sadek B., Khanian S.S., Ashoor A. et al. Effects of antihistamines on the function of human α7-nicotinic acetylcholine receptors. Eur. J. Pharmacol. 2015; 746: 308–16. doi: 10.1016/j.ejphar.2014.10.046
  38. Feng Z., Hou T., Li Y. Docking and MD study of histamine H4R based on the crystal structure of H1R. J. Mol. Graph Model. 2013; 39: 1–12. doi: 10.1016/j.jmgm.2012.11.001
  39. Lucero M.L., Gonzalo A., Ganza A. et al. Interactions of bilastine, a new oral H1 antihistamine, with human transporter systems. Drug Chem Toxicol. 2012; 35 (Suppl 1): 8–17. doi: 10.3109/01480545.2012.682660
  40. Ji-Hun Jang, Seung-Hyun Jeong, Yong-Bok Lee. Quantitative assessment of the relevance of organic-anion-transporting-polypeptide 1B1 and 2B1 polymorphisms in fexofenadine pharmacokinetic variants via pharmacometrics[J]. J. of Pharmaceutical Analysis. 2023; 13 (6): 660–72. doi: 10.1016/j.jpha.2023.04.001
  41. Batool M., Zamir A., Alqahtani F., et al. Clinical Pharmacokinetics of Fexofenadine: A Systematic Review. Pharmaceutics. 2024; 16 (12): 1619. doi: 10.3390/pharmaceutics16121619

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. scRNA-seq Map of HRH4 Expression in Airway Cells

下载 (109KB)
3. Fig. 2. Key signaling cascades modulated by second- and third-generation antihistamines are presented

下载 (86KB)

版权所有 © Russkiy Vrach Publishing House, 2025