Molecular genetic features of iron deficiency anemia phenotypes

Cover Page
  • Authors: Bakirova A.E.1, Parcernyak A.S.1, Kudlay D.A.2,3,4, Chumakova A.K.5, Abdeeva G.R.4
  • Affiliations:
    1. Federal State Budgetary Military Educational Institution of Higher Education “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation
    2. Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
    3. Federal Medical and Biological Agency
    4. Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University”, Ministry of Health of the Russian Federation
    5. Federal State Budgetary Scientific Institution Ufa Federal Research Center of the Russian Academy of Sciences
  • Issue: Vol 23, No 3 (2025)
  • Pages: 56-61
  • Section: Original research
  • URL: https://journals.eco-vector.com/1728-2918/article/view/689042
  • DOI: https://doi.org/10.29296/24999490-2025-03-07
  • ID: 689042

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. Iron deficiency anemia is a disease present all over the world and maintaining a high incidence rate of both general and primary morbidity despite various options for correction and prevention of this pathology. Molecular genotyping opens up new possibilities for understanding the pathogenetic mechanisms of disease development, as well as for finding a more targeted and personalized approach to therapy.

The aim of the study was to determine genetic markers of the risk of iron deficiency anemia by assessing polymorphic variants of rs235756 of the BMP2 gene, rs855791 of the TMPRSS6 gene, rs104894696 of the HAMP gene, rs4820268 of the TMPRSS6 gene and rs3817672 of the TFR1 gene.

Material and methods. The study included 97 patients with mild iron deficiency anemia and 120 people in the control group. Genotyping was performed by real-time polymerase chain reaction using primers and probes selected using the open online resource PrimerBlast (https://www.ncbi.nlm.nih.gov/tools/primerblast/).

Results. Genetic markers of the risk of developing IDA were identified: rs235756 of the BMP2 gene, rs855791 of the TMPRSS6 gene and resistant course of IDA: rs4820268 of the TMPRSS6 gene. This allows us to recommend determining these genetic markers when examining patients with iron deficiency anemia who do not respond to therapy with iron-containing drugs.

Conclusion. The identified marker profiles of IDA genotypes can optimize the approach to diagnosis, treatment and prevention of this pathology, as well as expand the range of criteria for predicting the course of the disease.

Full Text

Restricted Access

About the authors

Anna E. Bakirova

Federal State Budgetary Military Educational Institution of Higher Education “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: bakirovanna@gmail.com
ORCID iD: 0009-0008-4371-1597
SPIN-code: 4533-1300

postgraduate student of the hospital therapy department

Russian Federation, Lebedeva str., 6, Saint Petersburg, 194044

Alexander S. Parcernyak

Federal State Budgetary Military Educational Institution of Higher Education “Military Medical Academy named after S.M. Kirov” of the Ministry of Defense of the Russian Federation

Email: vmeda-nio@mail.ru
ORCID iD: 0000-0002-9721-1319
SPIN-code: 5829-1481

Doctor of Medical Sciences, Associate Professor; Head of the Department of Hospital Therapy

Russian Federation, Lebedeva str., 6, Saint Petersburg, 194044

Dmitry A. Kudlay

Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University); Federal Medical and Biological Agency; Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University”, Ministry of Health of the Russian Federation

Email: d624254@gmail.com
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880

Corresponding Member of the Russian Academy of Sciences, Doctor of Medical Sciences, Professor, Department of Pharmacology, Institute of Pharmacy, Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology No.71, Federal State Budgetary Institution “State Scientific Center Institute of Immunology”, Professor of the Department of Pathological Physiology

Russian Federation, Trubetskaya str., 8, build. 2, Moscow, 119048; Kashirskoe sh., 24, Moscow, 115522; Lenina St., 3, Ufa, Republic of Bashkortostan, 450008

Anna K. Chumakova

Federal State Budgetary Scientific Institution Ufa Federal Research Center of the Russian Academy of Sciences

Email: 021gen@mail.ru
ORCID iD: 0009-0001-8623-7812
SPIN-code: 3348-2767

Junior Researcher, Institute of Biochemistry and Genetics

Russian Federation, Oktyabrya Ave., 71, Ufa, Republic of Bashkortostan, 450054

Gulshat R. Abdeeva

Federal State Budgetary Educational Institution of Higher Education “Bashkir State Medical University”, Ministry of Health of the Russian Federation

Email: grabdeeva@bashgmu.ru
ORCID iD: 0000-0001-7189-5532
SPIN-code: 3961-0971

Junior Researcher, Laboratory of Molecular Genetics, Institute of Urology and Clinical Oncology

Russian Federation, Lenina St., 3, Ufa, Republic of Bashkortostan, 450008

References

  1. Ивакина С.Н., Нагимова Г.М., Бакиров Б.А., Кудлай Д.А. Анализ применения железосодержащих лекарственных препаратов для лечения анемии в России. Профилактическая медицина. 2021; 24 (4): 13–22. https://doi.org/10.17116/profmed20212404113
  2. Ramsay A.J., Hooper J.D., Folgueras A.R., Velasco G., López-Otin C. “Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis,” Haematologica. 2009; 94: 840–9.
  3. Istiqomah N., Umarghanies S.S., Fatmawati A., Sadewa A.H., Soesilo Y.H. et al, “Polymorphism gene Ferroportin as risk anemia factor of iron deficiency anemia on pregnant woman” (Polimorfisme gen ferroportin (FPN) -1355G/C sebagai faktor risiko anemia defisiensi besi pada ibu hamil). J. Gizi Klinik Indonesia. 2013; 09: 162–9.
  4. Ganz T. “Systemic iron homeostasis”, Physiol Rev. 2013; 93: 1721–41.
  5. Azman et al. Egyptian J. of Medical Human Genetics. 2024; 25: 46. https://doi.org/10.1186/s43042-024-00511-8
  6. Peng An, Qian Wu, Hao Wang, Yu Guan, Mingdao Mu, Yijun Liao, Daizhan Zhou, Pengkun Song, Chunrong Wang, Liping Meng, Qingqing Man, Lixiang Li, Jian Zhang, Fudi Wang, TMPRSS6, but not TF, TFR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia. Human Molecular Genetics. 2012; 21 (9): 2124–31. https://doi.org/10.1093/hmg/dds028
  7. Finberg K.E., Heeney M.M., Campagna D.R. et al. “Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA),” Nat Genet. 2008; 40 (5): 569–70.
  8. Milet J., Le Gac G., Scotet V., Gourlaouen I., Thèze C., Mosser J., Bourgain C., Deugnier Y., Férec C. A common SNP near BMP2 is associated with severity of the iron burden in HFE p.C282Y homozygous patients: a follow-up study. Blood Cells Mol Dis. 2010; 44 (1): 34–7. doi: 10.1016/j.bcmd.2009.10.001. Epub 2009 Oct 30. PMID: 19879168.
  9. Azman N.A., Zulkafli Z., Bakar N.S. et al. Association of single nucleotide polymorphism at BMP2 gene with iron deficiency status among anaemic patients in Hospital Universiti Sains Malaysia. Egypt J. Med. Hum Genet. 2024; 25: 46. https://doi.org/10.1186/s43042-024-00511-8
  10. Bösch E.S., Spörri J., Scherr J. Genetic Variants Affecting Iron Metabolism in Healthy Adults: A Systematic Review to Support Personalized Nutrition Strategies. Nutrients. 2024; 16 (22): 3793. doi: 10.3390/nu16223793. PMID: 39599580; PMCID: PMC11597267.
  11. Nalado A.M., Dickens C., Dix-Peek T. et al. TMPRSS6 rs855791 polymorphism and susceptibility to iron defciency anaemia in non-dialysis chronic kidney disease patients in South Africa. Int. J. Mol. Epidemiol Genet. 2019; 10: 1–9.
  12. Al-amer O., Hawasawi Y., Abdulwahab A. et al. Study the association of transmembrane serine protease 6 gene polymorphisms with iron defciency status in Saudi Arabia. Gene. 2020; 751: 144767.
  13. Elmahdy M., Elhakeem H., Gaber F. et al. TMPRSS6 gene polymorphism and serum hepcidin in iron defciency anemia. Egypt J. Hosp Med. 2018; 73: 7090–103.
  14. Hoang N.T.D., Orellana L., Le T.D., Gibson R.S., Worsley A., Sinclair A.J., Hoang N.T.T., Szymlek-Gay E.A. Anaemia and Its Relation to Demographic, Socio-economic and Anthropometric Factors in Rural Primary School Children in Hai Phong City, Vietnam. Nutrients. 2019; 11: 1478. https://doi.org/10.3390/nu11071478
  15. Sato T., Iyama S., Murase K. et al. “Novel missense mutation in the TMPRSS6 gene in a Japanese female with iron-refractory iron deficiency anemia”, Int. J. Hematol. 2011; 94 (1): 101–3.
  16. Оshida N., Sakaguchi H., Matsumoto K. et al. Two novel mutations in the tmprss6 gene associated with iron-refractory iron-defciency anaemia (irida) and partial expression in the heterozygous form Ironrefractory. Br. J. Haematol. 2012; 158: 666–8.
  17. Aisen P. Transferrin receptor 1. Int. J. Biochem Cell Biol. 2004; 36 (11): 2137–43. doi: 10.1016/j.biocel.2004.02.007
  18. Fernández-Real J.M., Mercarder J.M., José Ortega F., MorenoNavarette J.M., López-Romero P. et al. “Transferrin receptor-1 polymorphisms are associated with type 2 diabetes,” Eur. J. Clin. Invest. 2010; 40 (7): 600-7.
  19. Xiao X., Xu Y., Moschetta G.A., Yu Y., Fisher A.L., Alfaro-Magallanes V.M., McMillen S., Phillips S., Wang C.Y., Christian J., Babitt J.L. BMP5 contributes to hepcidin regulation and systemic iron homeostasis in mice. Blood. 2023; 142 (15): 1312–22. doi: 10.1182/blood.2022019195. PMID: 37478395; PMCID: PMC10613724.
  20. Chen X., Huang H., Li J., Zhang Y., Li C., Xie H., Wang L., Wu Q., Ye H. Association of iron homeostasis-related gene polymorphisms with pregnancy and neonatal outcomes in patients with gestational diabetes mellitus. PLoS One. 2024; 19 (12): e0312180. doi: 10.1371/journal.pone.0312180. PMID: 39666683; PMCID: PMC11637353.
  21. Yang L., Hao W., Wang H., Ren W., Yan P., Wei S. BMP2 increases hyperplasia and hypertrophy of bovine subcutaneous preadipocytes via BMP/SMAD signaling. In Vitro Cell Dev Biol Anim. 2022; 58 (3): 210–9. doi: 10.1007/s11626-022-00661-2. Epub 2022 Mar 11. PMID: 35275330.
  22. Muruganantham J.K., Veerabathiran R. Lack of association between the TMPRSS6 gene polymorphism (rs855791) and anemia: a comprehensive meta-analysis. Hematol Transfus Cell Ther. 2025; 47 (2): 103737. doi: 10.1016/j.htct.2025.103737. Epub ahead of print. PMID: 40081160; PMCID: PMC11954102.
  23. Tanaka T., Roy C.N., Yao W., Matteini A., Semba R.D., Arking D., Walston J.D., Fried L.P., Singleton A., Guralnik J. et al. A genome-wide association analysis of serum iron concentrations. Blood. 2010; 115: 94–6.
  24. Traglia M., Girelli D., Biino G., Campostrini N., Corbella M., Sala C., Masciullo C., Vigano F., Buetti I., Pistis G. et al. Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum hepcidin concentrations. J. Med. Genet. 2011; 48: 629–34.
  25. Nai A., Pagani A., Silvestri L., Campostrini N., Corbella M., Girelli D., Traglia M., Toniolo D. and Camaschella C. TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood. 2011. doi: 10.1182/blood-2011-06-364034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russkiy Vrach Publishing House