New diagnostic biomarkers for early stages of cutaneous T-cell lymphoma
- Authors: Gafurova O.A.1, Danilik O.N.1, Anufrieva O.V.1, Syrovatskaya Y.V.1, Orobets M.A.1, Artykova R.A.1, Gosteeva E.A.1, Rudenko E.E.1, Smolyannikova V.A.1
-
Affiliations:
- Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- Issue: Vol 23, No 1 (2025)
- Pages: 27-33
- Section: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/689291
- DOI: https://doi.org/10.29296/24999490-2025-01-03
- ID: 689291
Cite item
Abstract
Currently, the diagnosis of early stages of cutaneous T-cell lymphomas (CTCL) is one of the most challenging tasks in dermatology. This review is devoted to the analysis of new immunohistochemical (IHC) markers that could be considered diagnostic for the detection of CTCL, as well as potential targets for targeted therapy of the disease.
The aim of this review was to determine and summarize new promising biomarkers that are not currently used for the diagnosis of early stages of CTCL.
Material and methods: the analysis and systematization of scientific literature over the past 5 years was carried out in the PubMed database using the search algorithm: “cutaneous T-cell lymphoma” AND (“immunohistochem” OR “IHC” OR “expression”).
Results. All found biomarkers were divided into 3 groups:
- Tumor progression markers: OX40 и OX40L, ICOS, TOX, GATA-3, TSP-1, CD47, YKL-40, IKZF2, E-FABP, CXCR4, CD69, HSPA1A, ZFP36, TXNIP and IL7R;
- Differential diagnostic markers: STAT4, YKL-40, BCL11B, CD70, hBD-2 and psoriasin;
- Tumor microenvironment markers: IL-10, PD-L1, FAP-α, CD69, granzyme B, NKp46, TIM3, CD57 and LAG3.
Conclusion. The most promising marker to diagnose the early stages is YKL-40 since it can serve as both a prognostic and differential diagnostic marker.
Keywords
Full Text

About the authors
Olga A. Gafurova
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Author for correspondence.
Email: lobanova_o_a@staff.sechenov.ru
ORCID iD: 0000-0002-6813-3374
Pathologist, Assistant of the Institute of Clinical Morphology and Digital Pathology
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Oleg N. Danilik
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: oleg.danilik7@gmail.com
ORCID iD: 0009-0001-8841-6275
student of the Institute of Biodesign and Modelling of Complex Systems
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Olesya V. Anufrieva
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: benrimasalmin@bk.ru
ORCID iD: 0009-0002-2525-5272
student of the Institute of Pharmacy named after A.P. Nelubin
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Yana V. Syrovatskaya
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: yana.syr@bk.ru
ORCID iD: 0009-0004-7095-3955
student of the Institute of Pharmacy named after A.P. Nelyubin
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Margarita A. Orobets
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: margaret.orobets@gmail.com
ORCID iD: 0009-0002-4231-5329
student of the Institute of Pharmacy named after A.P. Nelyubin
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Regina A. Artykova
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: Artykovara@gmail.com
ORCID iD: 0009-0000-4949-7183
student of the Institute of Clinical Medicine named after N.V. Sklifosovsky
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Eva A. Gosteeva
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: gosteeva_e_a@student.sechenov.ru
ORCID iD: 0009-0001-1541-4439
student of the N.F. Filatov Clinical Institute of Pediatric Health
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Ekaterina E. Rudenko
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: rudenko_e_e@staff.sechenov.ru
ORCID iD: 0000-0002-0000-1439
Candidate of Medical Sciences, Deputy Director for Research, Professor Assistant at the Institute of Clinical Morphology and Digital Pathology
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048Vera A. Smolyannikova
Federal State Autonomous Educational Institution of Higher Education I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: smva@bk.ru
ORCID iD: 0000-0002-7759-5378
Doctor of Medical Sciences, Professor of the Institute of Clinical Morphology and Digital Pathology
Russian Federation, st. Trubetskaya, 8/2, Moscow, 119048References
- Dobos G., Miladi M., Michel L., Ram-Wolff C., Battistella M., Bagot M. et al. Recent advances on cutaneous lymphoma epidemiology. La Presse Médicale. 2022; 51 (1): 104108. https://doi.org/10.1016/j.lpm.2022.104108
- Демина О.М., Акилов О.Е., Румянцев А.Г. Т-клеточные лимфомы кожи: современные данные патогенеза, клиники и терапии. Онкогематология. 2018; 13 (3): 25–38. https://doi.org/10.17650/1818-8346-2018-13-3-25-38. [Demina O.M., Akilov O.E., Rumyantsev A.G. Cutaneous T-cell lymphomas: modern data of pathogenesis, clinics and therapy. Onkogematologiâ. 2018; 13 (3): 25–38 (in Russian)]
- Kawai H., Ando K., Maruyama D., Yamamoto K., Kiyohara E., Terui Y., Fukuhara N. et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Science. 2021; 112 (6): 2426–35. https://doi.org/10.1111/cas.14906
- Поддубная И.В., Савченко В.В. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. ООО Буки Веди, 2016. [Poddubnaya I.V., Savchenko V.V. Rossijskie klinicheskie rekomendacii po diagnostike i lecheniyu limfoproliferativnyh zabolevanij. OOO Buki Vedi, 2016 (in Russian)]
- Geller S., Hollmann T.J., Horwitz S.M., Myskowski P.L., Pulitzer M. C-C chemokine receptor 4 expression in CD8+ cutaneous T-cell lymphomas and lymphoproliferative disorders, and its implications for diagnosis and treatment. Histopathology. 2020; 76 (2): 222–32. https://doi.org/10.1111/his.13960
- Olisova O.Y., Grekova E.V., Varshavsky V.A., Gorenkova L.G., Alekseeva E.A., Zaletaev D.V., Sydikov A.A. Current possibilities of the differential diagnosis of plaque parapsoriasis and the early stages of mycosis fungoides. Arkh Patol. 2019; 81 (1): 9–17. https://doi.org/10.17116/patol2019810119
- Xu B., Liu F., Gao Y., Sun J., Li Y., Lin Y., Liu X. et al. High Expression of IKZF2 in Malignant T Cells Promotes Disease Progression in Cutaneous T Cell Lymphoma. Acta Derm Venereol. 2021; 101 (12): adv00613. https://doi.org/10.2340%2Factadv.v101.570
- Yang C., Mai H., Peng J., Zhou B., Hou J., Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int. J. Biol. Sci. 2020; 16 (9): 1575–85. https://doi.org/10.7150%2Fijbs.41852
- Sun S., Dong H., Yan T., Li J., Liu B., Shao P., Li J., Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC Med Genet. 2020; 21 (1): 139. https://doi.org/10.1186/s12881-020-01073-3
- Tizaoui K., Yang J.W., Lee K.H., Kim J.H., Kim M., Yoon S., Jung Y. et al. The role of YKL-40 in the pathogenesis of autoimmune diseases: a comprehensive review. Int. J. Biol. Sci. 2022; 18 (9): 3731–46. https://doi.org/10.7150/ijbs.67587
- Chang M.C., Chiang P.F., Kuo Y.J., Peng C.L., Chen I.C., Huang C.Y., Chen C.A., Chiang Y.C. Develop companion radiopharmaceutical YKL40 antibodies as potential theranostic agents for epithelial ovarian cancer. Biomed Pharmacother. 2022; 155: 113668. https://doi.org/10.7150%2Fjca.62285
- Andtbacka R.H.I., Wang Y., Pierce R.H., Campbell J.S., Yushak M., Milhem M., Ross M. еt al. Mavorixafor, an Orally Bioavailable CXCR4 Antagonist, Increases Immune Cell Infiltration and Inflammatory Status of Tumor Microenvironment in Patients with Melanoma. Cancer Res Commun. 2022; 2 (8): 904–13. https://doi.org/10.1158/2767-9764.crc-22-0090
- Zhang Y., Luo Y., Qin S.L., Mu Y.F., Qi Y., Yu M.H., Zhong M. The clinical impact of ICOS signal in colorectal cancer patients. Oncoimmunology. 2016; 5 (5): e1141857. https://doi.org/10.1080/2162402x.2016.1141857
- Xu-Monette Z.Y., Zhou J., Young K.H. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018; 131 (1): 68–83. https://doi.org/10.1182/blood-2017-07-740993
- Wang L., Rocas D., Dalle S., Sako N., Pelletier L., Martin N., Dupuy A. еt al. Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype: an integrative clinical, pathological and molecular case series study. Br. J. Dermatol. 2022; 187 (6): 970–80. https://doi.org/10.1111/bjd.21791
- Karpathiou G., Papoudou-Bai A., Ferrand E., Dumollard J.M., Peoc’h M. STAT6: A review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol Res Pract. 2021; 223: 153477. https://doi.org/10.1016/j.prp.2021.153477
- Zhang Y., Zhang Y., Gu W., Sun B. TH1/TH2 cell differentiation and molecular signals. Adv Exp. Med. Biol. 2014; 841: 15–44. https://doi.org/10.1007/978-94-017-9487-9_2
- Murga-Zamalloa C., Wilcox R.A. GATA-3 in T-cell lymphoproliferative disorders. IUBMB Life. 2020; 72 (1): 170–7. https://doi.org/10.1002%2Fiub.2130
- Tindemans I., Serafini N., Di Santo J.P., Hendriks R.W. GATA-3 function in innate and adaptive immunity. Immunity. 2014; 41 (2): 191–206. https://doi.org/10.1016/j.immuni.2014.06.006
- Hetemäki I., Kaustio M., Kinnunen M., Heikkilä N., Keskitalo S., Nowlan K., Miettinen S. et al. Loss-of-function mutation in IKZF2 leads to immunodeficiency with dysregulated germinal center reactions and reduction of MAIT cells. Sci Immunol. 2021; 6 (65): eabe3454. https://doi.org/10.1126/sciimmunol.abe3454
- Ouyang W., O’Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity. 2019; 50 (4): 871–91. https://doi.org/10.1016/j.immuni.2019.03.020
- Hayat S.M.G., Bianconi V., Pirro M., Jaafari M.R., Hatamipour M., Sahebkar A. CD47: role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 2020; 43 (1): 19–30. https://doi.org/10.1007/s13402-019-00469-5
- Chakraborty S., Kubatzky K.F., Mitra D.K. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int. J. Mol. Sci. 2019; 20 (9): 2113. https://doi.org/10.3390/ijms20092113
- Matusiewicz K., Iwańczak B., Matusiewicz M. Th9 lymphocytes and functions of interleukin 9 with the focus on IBD pathology. Adv Med. Sci. 2018; 63 (2): 278–84. https://doi.org/10.1016/j.advms.2018.03.002
- Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 2017; 47 (6): 946–53. https://doi.org/10.1002/eji.201646837
- Gorabi A.M., Hajighasemi S., Kiaie N., Gheibi Hayat S.M., Jamialahmadi T., Johnston T.P., Sahebkar A. The pivotal role of CD69 in autoimmunity. J. Autoimmun. 2020; 111: 102453. https://doi.org/10.1016/j.jaut.2020.102453
- Moar P., Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol. 2021; 361: 104287. https://doi.org/10.1016/j.cellimm.2021.104287
- Suzuki H., Boki H., Kamijo H., Nakajima R., Oka T., Shishido-Takahashi N. et al. YKL-40 Promotes Proliferation of Cutaneous T-Cell Lymphoma Tumor Cells through Extracellular Signal-Regulated Kinase Pathways. J. Invest Dermatol. 2020; 140 (4): 860–868.e3. https://doi.org/10.1016/j.jid.2019.09.007
- Kawana Y., Suga H., Kamijo H., Miyagaki T., Sugaya M., Sato S. Roles of OX40 and OX40 Ligand in Mycosis Fungoides and Sézary Syndrome. Int. J. Mol. Sci. 2021; 22 (22): 12576. https://doi.org/10.3390/ijms222212576
- Di Raimondo C., Rubio-Gonzalez B., Palmer J., Weisenburger D.D., Zain J., Wu X., Han Z. et al. Expression of immune checkpoint molecules programmed death protein 1, programmed death-ligand 1 and inducible T-cell co-stimulator in mycosis fungoides and Sézary syndrome: association with disease stage and clinical outcome. Br. J. Dermatol. 2022; 187 (2): 234–43. https://doi.org/10.1111/bjd.21063
- Atwa H.A., Abdelrahman D.I. The Value of Immunohistochemical Expression of TOX, ICOS, and GATA-3 in the Diagnosis of Mycosis Fungoides. Appl Immunohistochem Mol Morphol. 2023; 31 (3): 163–71. https://doi.org/10.1097/pai.0000000000001110
- Kamijo H., Miyagaki T., Takahashi-Shishido N., Nakajima R., Oka T., Suga H., Sugaya M., Sato S. Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47. Leukemia. 2020; 34 (3): 845–56. https://doi.org/10.1038/s41375-019-0622-6
- Takahashi-Shishido N., Sugaya M., Morimura S., Suga H., Oka T., Kamijo H., Miyagaki T., Sato S. Mycosis fungoides and Sézary syndrome tumor cells express epidermal fatty acid-binding protein, whose expression decreases with loss of epidermotropism. J. Dermatol. 2021; 48 (5): 685–9. https://doi.org/10.1111/1346-8138.15775
- Rindler K., Jonak C., Alkon N., Thaler F.M., Kurz H., Shaw L.E., Stingl G. et al. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer. 2021; 20 (1): 124. https://doi.org/10.1186/s12943-021-01419-2
- Liu J., Zheng X., Pang X., Li L., Wang J., Yang C., Du G. Ganglioside GD3 synthase (GD3S), a novel cancer drug target. Acta Pharm Sin B. 2018; 8 (5): 713–20. https://doi.org/10.1016%2Fj.apsb.2018.07.009
- Lennon M.J., Jones S.P., Lovelace M.D., Guillemin G.J., Brew B.J. Bcl11b-A Critical Neurodevelopmental Transcription Factor-Roles in Health and Disease. Front Cell Neurosci. 2017; 11: 89. https://doi.org/10.3389%2Ffncel.2017.00089
- Wajant H. Therapeutic targeting of CD70 and CD27. Expert Opin Ther Targets. 2016; 20 (8): 959–73. https://doi.org/10.1517/14728222.2016.1158812
- Sans-de San Nicolàs L., Czarnowicki T., Akdis M., Pujol R.M., Lozano-Ojalvo D., Leung D.Y.M., Guttman-Yassky E., Santamaria-Babi L.F. CLA+ memory T cells in atopic dermatitis. Allergy. 2023. https://doi.org/10.1111/all.15816
- Cieślik M., Bagińska N., Górski A., Jończyk-Matysiak E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells. 2021; 10 (11): 2991. https://doi.org/10.3390/cells10112991
- Pan M., Zhang F., Qu K., Liu C., Zhang J. TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. Oxid Med Cell Longev. 2022; 2022: 7805115. https://doi.org/10.1155%2F2022%2F7805115
- Fang H., Khoury J.D., Torres-Cabala C.A., Ng S.B., Xu J., El Hussein S., Hu S. et al. Expression pattern and diagnostic utility of BCL11B in mature T- and NK-cell neoplasms. Pathology. 2022; 54 (7): 893–9. https://doi.org/10.1016/j.pathol.2022.04.012
- Wu C.H., Wang L., Yang C.Y., Wen K.W., Hinds B., Gill R., McCormick F. et al. Targeting CD70 in cutaneous T-cell lymphoma using an antibody-drug conjugate in patient-derived xenograft models. Blood Adv. 2022; 6 (7): 2290–302. https://doi.org/10.1182/bloodadvances.2021005714
- Wehkamp U., Jost M., Wehkamp K., Harder J. Dysregulated Expression of Antimicrobial Peptides in Skin Lesions of Patients with Cutaneous T-cell Lymphoma. Acta Derm Venereol. 2020; 100 (1): adv00017. https://doi.org/10.2340/00015555-3372
- Peru S., Prochazkova-Carlotti M., Cherrier F., Velazquez J., Richard E., Idrissi Y., Cappellen D. et al. Cutaneous Lymphocyte Antigen Is a Potential Therapeutic Target in Cutaneous T-Cell Lymphoma. J. Invest Dermatol. 2022; 142 (12): 3243–3252.e10. https://doi.org/10.1016/j.jid.2022.06.016
- Zheng Y., Fang Y.C., Li J. PD-L1 expression levels on tumor cells affect their immunosuppressive activity. Oncol Lett. 2019; 18 (5): 5399–407. https://doi.org/10.3892/ol.2019.10903
- Mori N., Jin J., Krishnamachary B., Mironchik Y., Wildes F., Vesuna F., Barnett J.D., Bhujwalla Z.M. Functional roles of FAP-α in metabolism, migration and invasion of human cancer cells. 2023. https://doi.org/10.3389/fonc.2023.1068405
- Mehdi S.J., Moerman-Herzog A., Wong H.K. Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer. 2021; 21 (1): 492. https://doi.org/10.1186/s12885-021-08142-7
- Scheffschick A., Nenonen J., Xiang M., Winther A.H., Ehrström M., Wahren-Herlenius M. et al. Skin infiltrating NK cells in cutaneous T-cell lymphoma are increased in number and display phenotypic alterations partially driven by the tumor. Front Immunol. 2023; 14: 1168684. https://doi.org/10.3389/fimmu.2023.1168684
- Wu X., Hsu D.K., Wang K.H., Huang Y., Mendoza L., Zhou Y., Hwang S.T. IL-10 is overexpressed in human cutaneous T-cell lymphoma and is required for maximal tumor growth in a mouse model. Leuk Lymphoma. 2019; 60 (5): 1244–52. https://doi.org/10.1080/10428194.2018.1516037
Supplementary files
