Experimental models of lung sarcoidosis
- Authors: Zinchenko Y.S.1, Muraviov A.N.1, Kudryashov G.G.1, Kornilova A.I.1, Dyatlova A.S.1, Polyakova V.O.1
-
Affiliations:
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
- Issue: Vol 22, No 6 (2024)
- Pages: 14-20
- Section: Reviews
- URL: https://journals.eco-vector.com/1728-2918/article/view/677279
- DOI: https://doi.org/10.29296/24999490-2024-06-02
- ID: 677279
Cite item
Abstract
Introduction. Sarcoidosis is a systemic granulomatous disease of unknown origin. The study of its features and the development of new diagnostic and treatment methods are limited by the absence of generally accepted experimental models. The purpose of the review is to evaluate existing models of sarcoidosis. To date, there have been in vitro, in vivo, and in silico models of lung sarcoidosis developed. In vitro models are mainly based on cells obtained from C57BL/6J mice or from patients with sarcoidosis. In vivo models have been developed using Lewis rats and C57BL/6 mice. Granuloma formation in these experimental models occurs under the influence of various infectious (most often M. tuberculosis antigens) and non-infectious triggers (such as introducing nanoparticles like quantum dots and multi-walled carbon nanotubes). In silico models consist of individual studies that combine biological data with mathematical and computational representations of granuloma formation. These models allow researchers to evaluate the interactions between immune cells and various cytokines and predict the effects of drugs on potential targets. However, the quality of these models is closely linked to in vitro and in vivo studies and the information obtained from research on the pathogenesis of sarcoidosis.
Material and methods. Studies published in international research databases over the last ten years were reviewed using the keywords sarcoidosis, lung sarcoidosis, and sarcoidosis models, in silico, in vitro and in vivo models.
Conclusion. None of the models adequately meets the research objectives and does not fully reproduce the disease. The prospects for improving sarcoidosis models lie in the use of genetically engineered mice, the creation of cell lines, and the exploration of in silico models.
Full Text

About the authors
Yulia Sergeevna Zinchenko
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Author for correspondence.
Email: ulia-zinchenko@yandex.ru
ORCID iD: 0000-0002-6273-4304
PhD, Senior Researcher, Head of the Laboratory for the Study of Chronic Nonspecific Lung Diseases
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036Alexander Nikolaevich Muraviov
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Email: urolog5@gmail.com
ORCID iD: 0000-0002-6974-5305
PhD, Leading Researcher, Head of the Laboratory of Cell Biology and Regenerative Medicine, Scientific Secretary
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036Grigory Gennadievich Kudryashov
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Email: gg.kudriashov@spbniif.ru
ORCID iD: 0000-0002-2810-8852
PhD, Leading Researcher, Head of the Department of Pulmonology and Thoracic Surgery
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036Anastasia Igorevna Kornilova
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Email: an.kornilova@mail.ru
ORCID iD: 0000-0002-4807-8726
Junior Researcher
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036Anastasia Sergeevna Dyatlova
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Email: me@diatlova.ru
ORCID iD: 0000-0003-2640-6159
Junior Researcher
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036Victoria Olegovna Polyakova
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Email: vo.polyakova@spbniif.ru
ORCID iD: 0000-0001-8682-9909
Doctor of Biological Sciences, Professor, Head of the Department of Fundamental Medicine
Russian Federation, Ligovsky ave. 2–4, Saint Petersburg, 191036References
- Polverino F., Balestro E., Spagnolo P. Clinical Presentations, Pathogenesis, and Therapy of Sarcoidosis: State of the Art. J. Clin. Med. 2020; 9 (8): 2363. doi: 10.3390/jcm9082363.
- Sakthivela P., Brudera B. Mechanism of granuloma formation in sarcoidosisю Curr. Opin. Hematol. 2017; 24 (1): 59–65. doi: 10.1097/MOH.0000000000000301.
- Locke L.W., Schlesinger L.S., Crouser E.D. Current Sarcoidosis Models and the Importance of Focusing on the Granuloma. Front Immunol. 2020; 11: 1719. doi: 10.3389/fimmu.2020.01719.
- Jeny F., Pacheco Y., Besnard V., Valeyre D., Bernaudin J-F. Experimental models of sarcoidosis. Current Opinion in Pulmonary Medicine. 2016; 22 (5): 492–9. doi: 10.1097/MCP.0000000000000295.
- Besnard V., Jeny F. Models Contribution to the Understanding of Sarcoidosis Pathogenesis: «Are There Good Models of Sarcoidosis?». J. Clin. Med. 2020; 9 (8): 2445. doi: 10.3390/jcm9082445.
- Sanchez V.C., Weston P., Yan A., Hurt R.H., Kane A.B. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol. 2011; 8: 17. doi: 10.1186/1743-8977-8-17.
- Crouser E.D., White P., Caceres E.G., Julian M.W., Papp A.C., Locke L.W., Sadee W., Schlesinger L.S. A novel in vitro human granuloma model of sarcoidosis and latent tuberculosis infection. Am. J. Respir Cell Mol. Biol. 2017; 57 (4): 487–98. doi: 10.1165/rcmb.2016-0321OC.
- Taflin C., Miyara M., Nochy D., Valeyre D., Naccache J.M., Altare F., Salek-Peyron P., Badoual C., Bruneval P., Haroche J., Mathian A., Amoura Z., Hill G., Gorochov G. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am. J. Pathol. 2009; 174 (2): 497–508. doi: 10.2353/ajpath.2009.080580.
- Zhang C., Chery S., Lazerson A., Altman N.H., Jackson R., Holt G., Campos M., Schally A.V., Mirsaeidi M. Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model. Sci Rep. 2020; 10 (1): 7277. doi: 10.1038/s41598-020-64305-9.
- Calcagno T.M., Zhang C., Tian R., Ebrahimi B., Mirsaeidi M. Novel three-dimensional biochip pulmonary sarcoidosis model. PLoS One. 2021; 16 (2): e0245805. doi: 10.1371/journal.pone.0245805.
- Li K., Yang X., Xue C., Zhao L., Zhang Y., Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. Biomicrofluidics. 2019; 13 (3): 031501. doi: 10.1063/1.5100070.
- Shahraki A.H., Tian R., Zhang C., Fregien N.L., Bejarano P., Mirsaeidi M. Anti-inflammatory properties of the Alpha-Melanocyte-Stimulating Hormone in models of granulomatous inflammation. Lung. 2022; 200 (4): 463–72. doi: 10.1007/s00408-022-00546-x.
- Mohan A., Malur A., McPeek M., Barna B.P., Schnapp L.M., Thomassen M.J., Gharib S.A. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. Am. J. Physiol Lung Cell Mol. Physiol. 2018; 314 (4): 617–25. doi: 10.1152/ajplung.00289.2017.
- Barna B.P., Malur A., Thomassen M.J. Studies in a murine granuloma model of instilled carbon nanotubes: relevance to sarcoidosis. Int J. Mol. Sci. 2021; 22 (7): 3705. doi: 10.3390/ijms22073705.
- Ho C.C., Chang H., Tsai H.T., Tsai M.H., Yang C.S., Ling Y.C., Lin P. Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung. Nanotoxicology. 2013; 7 (1): 105–15. doi: 10.3109/17435390.2011.635814.
- Swaisgood C.M., Oswald-Richter K., Moeller S.D., Klemenc J.M., Ruple L.M., Farver C.F., Drake J.M., Culver D.A., Drake W.P. Development of a sarcoidosis murine lung granuloma model using Mycobacterium superoxide dismutase A peptide. Am. J. Respir Cell Mol. Biol. 2011; 44 (2): 166–74. doi: 10.1165/rcmb.2009-0350OC.
- Zhang C., Tian R., Dreifus E.M., Hashemi Shahraki A., Holt G., Cai R., Griswold A., Bejarano P., Jackson R., V Schally A., Mirsaeidi M. Activity of the growth hormone-releasing hormone antagonist MIA602 and its underlying mechanisms of action in sarcoidosis-like granuloma. Clin Transl Immunology. 2021; 10 (7): e1310. doi: 10.1002/cti2.1310.
- Ishige I., Eishi Y., Takemura T., Kobayashi I., Nakata K., Tanaka I., Nagaoka S., Iwai K., Watanabe K., Takizawa T., Koike M. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005; 22 (1): 33–42. PMID: 15881278.
- Iio K., Iio T.U., Okui Y., Ichikawa H., Tanimoto Y., Miyahara N., Kanehiro A., Tanimoto M., Nakata Y., Kataoka M. Experimental pulmonary granuloma mimicking sarcoidosis induced by Propionibacterium acnes in mice. Acta Med Okayama. 2010; 64 (2): 75–83. doi: 10.18926/AMO/32852.
- Jiang D., Huang X., Geng J., Dong R., Li S., Liu Z., Wang C., Dai H. Pulmonary fibrosis in a mouse model of sarcoid granulomatosis induced by booster challenge with Propionibacterium acnes. Oncotarget. 2016; 7 (23): 33703–14. doi: 10.18632/oncotarget.9397.
- Linke M., Pham H.T., Katholnig K., Schnöller T., Miller A., Demel F., Schütz B., Rosner M., Kovacic B., Sukhbaatar N., Niederreiter B., Blüml S., Kuess P., Sexl V., Müller M., Mikula M., Weckwerth W., Haschemi A., Susani M., Hengstschläger M., Gambello M.J., Weichhart T. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol. 2017; 18 (3): 293–302. doi: 10.1038/ni.3655.
- Jeny F., Grutters J.C. Experimental models of sarcoidosis: where are we now? Curr Opin Pulm Med. 2020; 26 (5): 554–61. doi: 10.1097/MCP.0000000000000708.
- Aguda B.D., Marsh C.B., Thacker M., Crouser E.D. An in silico modeling approach to understanding the dynamics of sarcoidosis. PLoS One. 2011; 6 (5): e19544. doi: 10.1371/journal.pone.0019544.
- Hao W., Crouser E.D., Friedman A. Mathematical model of sarcoidosis. Proc NatlAcadSci USA. 2014; 111 (45): 16065–70. doi: 10.1073/pnas.1417789111.
- Bueno-Beti C., Lim C.X., Protonotarios A., Szabo P.L., Westaby J., Mazic M., Sheppard M.N., Behr E., Hamza O., Kiss A., Podesser B.K., Hengstschläger M., Weichhart T., Asimaki A. An mTORC1-Dependent Mouse Model for Cardiac Sarcoidosis. J. Am. Heart Assoc. 2023; 12 (19): e030478. doi: 10.1161/JAHA.123.030478.
- Shahraki A.H., Tian R., Zhang C., Fregien N.L., Bejarano P., Mirsaeidi M. Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation. Lung. 2022; 200 (4): 463–72. doi: 10.1007/s00408-022-00546-x.
- Crouser E.D. In-silico modeling of granulomatous diseases. Curr Opin Pulm Med. 2016; 22 (5): 500–8. doi: 10.1097/MCP.0000000000000296.
Supplementary files
