Specifics of electron-beam microscale processing of substrates made of various types of ceramics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article considers the capabilities of the method of electron-beam processing of ceramics. The results of experimental studies on the processing of VK94-DN and LTCC KEKO SK‑47 sintered ceramics are presented.

Texto integral

Acesso é fechado

Sobre autores

Y. Zhuo

МГТУ им. Н. Э. Баумана

Autor responsável pela correspondência
Email: zhuoyy@yandex.ru

аспирант

Rússia

V. Maslovsky

МГТУ им. Н. Э. Баумана

Email: maslovskyvn.nano@yandex.ru

студент

Rússia

K. Moiseev

МГТУ им. Н. Э. Баумана

Email: k.moiseev@bmstu.ru

доцент, к. т. н.

Rússia

I. Vorobyov

ООО «Джиэнаксель»

Email: sales@gnaxel.ru

коммерческий директор

Rússia

М. Nazarenko

РТУ МИРЭА

Email: m.v.makarova@list.ru

аспирант

Rússia

Bibliografia

  1. Горохова Е. Материаловедение и технология керамики. Litres, 2021.
  2. Samant A. N., Dahotre N. B. Laser machining of structural ceramics – A review // Journal of the European ceramic society. 2009. V. 29. No. 6. PP. 969–993.
  3. Somiya S. Handbook of advanced ceramics: materials, applications, processing, and properties. Academic press, 2013.
  4. Levinson L. Electronic Ceramics: Properties: Devices, and Applications. CRC Press, 2020.
  5. Bharathi V., Anilchandra A. R., Sangam S. S., et al. A review on the challenges in machining of ceramics // Materials Today: Proceedings. 2021. V. 46. PP. 1451–1458.
  6. Гусев В. В., Моисеев Д. А. Износ алмазного шлифовального круга при обработке керамики // Прогрессивные технологии и системы машиностроения. 2019. № 4. С. 25–29.
  7. Ненилина А. Ю., Беликов А. И. Исследование проблем производства многослойных керамических плат на основе LTCC-технологии // Будущее машиностроения России. 2022. С. 267–270.
  8. Кондратюк Р. LTCC – низкотемпературная совместно обжигаемая керамика // НАНОИНДУСТРИЯ. 2011. № 2. С. 26–30.
  9. Борейко Д. А., Князева А. Р. Особенности проектирования многозвенных LC-фильтров на основе LTCC-технологии // Обмен опытом в области создания сверхширокополосных радиоэлектронных систем. 2022. С. 58–66.
  10. Li Y., Guo X. A review on wireless sensors fabricated using the low temperature co-fired ceramic (LTCC) technology // Australian Journal of Mechanical Engineering. 2021. V. 19. No. 5. PP. 699–711.
  11. Wang D. et al. A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss // Ceramics International. 2021. V. 47. No. 20. PP. 28675–28684.
  12. Черных В. и др. Методы оформления отверстий в «сырых» LTCC и НТСС керамических картах // Компоненты и технологии. 2014. № 5. С. 188–191.
  13. Перцель Я. М., Рудак Ю. А. Исследование возможности получения рисунка топологии толстопленочных LTCC-плат с помощью лазера // Техника радиосвязи. 2015. № 3. С. 90–96.
  14. Hagen G., Rebenklau L. Fabrication of smallest vias in LTCC Tape // 2006 1st Electronic Systemintegration Technology Conference. IEEE, 2006. V. 1. PP. 642–647.
  15. Rebenklau L., Wolter K. J., Hagen G. Realization of μ-Vias in LTCC Tape // 2006 29th International Spring Seminar on Electronics Technology. IEEE, 2006. PP. 55–63.
  16. Wang G. et al. Fabrication of microvias for multilayer LTCC substrates // IEEE transactions on electronics packaging manufacturing. 2006. V. 29. No. 1. PP. 32–41.
  17. Zhuo Y. et al. Possibilities of the Electron-Beam Machine “LUCH” for Dimensional Microprocessing of Glass and Ceramic Materials // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. V. 781. No. 1. P. 012014.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Holes in the VK94-DN substrate, obtained with different numbers of pulses: a – N = 999, d = 2.57 mm; b – N = 600, d = 2.56 mm; c – N = 400, d = 2.61 mm; g – N = 200, d = 2.78 mm

Baixar (9KB)
3. Fig. 2. Holes in the VK94-DN substrate obtained at different beam currents: a – Iо = 1 mA, d = 2.31 mm; b – Iо = 2 mA, d = 2.62 mm; c – Iо = 3 mA, d = 2.70 mm; d – Iо = 4 mA, d = 2.81 mm; d – Iо = 5 mA, d = 3.26 mm

Baixar (11KB)
4. Fig. 3. Holes processed at different focus states: a – Iph = 615 mA, d = 2.54 mm; b – Iph = 620 mA, d = 2.50 mm; c – Iph = 625 mA, d = 2.31 mm; d – Iph = 630 mA, d = 2.57 mm; d – Iph = 635 mA, d = 2.67 mm

Baixar (10KB)
5. Fig. 4. Holes processed at different pulse durations: a – T1 = 5 ms, d = 2.31 mm; b – T1 = 10 ms, d = 3.15 mm; c – T1 = 20 ms, d = 3.53 mm; d – T1 = 30 ms, d = 3.58 mm; d – T1 = 40 ms, d = 3.61 mm; e – T1 = 50 ms, d = 3.71 mm

Baixar (13KB)
6. Fig. 5. Holes processed at different pause durations: a – T2 = 100 ms, d = 2.31 mm; b – T2 = 60 ms, d = 3.10 mm; c – T2 = 40 ms, d = 3.27 mm; d – T2 = 20 ms, d = 3.10 mm; d – T2 = 10 ms, d = 2.83 mm

Baixar (10KB)
7. Fig. 6. Steel plate with holes on LTCC sheet (a) and processing diagram (b)

Baixar (21KB)
8. Fig. 7. Images of holes when drilling with an electron beam with different scanning frequencies: a – 20 Hz; b – 600 Hz; c – 1,200 Hz

Baixar (12KB)
9. Fig. 8. Processing results at a frequency of 1,200 Hz and various scanning lengths (a.u.): a – 600; b – 700; c – 800; g – 900; d – 999

Baixar (17KB)
10. Fig. 9. Processing results at a frequency of 50 Hz and various scanning lengths (a.u.): a – 600; b – 700; c – 800; g – 900; d – 999

Baixar (16KB)
11. Fig. 10. Processing results when scanning at different speeds: a – 1 mm/s; b – 2 mm/s; c – 3 mm/s

Baixar (21KB)

Declaração de direitos autorais © Zhuo Y., Maslovsky V., Moiseev K., Vorobyov I., Nazarenko М., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies