Use of artificial intelligence and computer simulation in the field of superconductivity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The article presents an overview of the use of artificial intelligence technologies in the field of superconductivity. It will help to better understand the previous stages of development of these technologies, as well as predict future prospects for their development.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Abdyukhanov

АО «ВНИИНМ»

Хат алмасуға жауапты Автор.
Email: MDTerina@bochvar.ru

кандидат технических наук

Ресей

M. Terina

АО «ВНИИНМ»

Email: MDTerina@bochvar.ru

инженер

Ресей

I. Savelyev

АО «ВНИИНМ»

Email: IISavelyev@bochvar.ru

научный сотрудник

Ресей

A. Tsapleva

АО «ВНИИНМ»

Email: ASTsapleva@bochvar.ru

кандидат технических наук

Ресей

M. Alekseev

АО «ВНИИНМ»

Email: MaVAlekseev@bochvar.ru

кандидат технических наук

Ресей

Әдебиет тізімі

  1. Гинзбург В. Л., Андрюшин Е. А. Сверхпроводимость. Изд. 2-е, перераб. и доп. М.: Альфа-М, 2006. 110 с.
  2. Bednorz J. C., Müller K. A. Possible High Tc Superconductivity in the Ba-La-Cu-O system // Zeitschrift für Physik B. Condensed Matter.1986. V. 64. PP. 189–193.
  3. Zhao Z. X., Chen L. Q., Yang Q. S. et al. Superconductivity above liquid nitrogen temperature in new oxide system // Sci. Bull., 1987. V. 32. PP. 1098–1102.
  4. Wu M. K., Ashburn J. R., Torng C. J., Hor P. H., Meng R. L., Gao L., Huang Z. J., Wang Y. Q., Chu C. W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure // Phys. Rev. Lett., 1987. V. 58. PP. 908–910.
  5. Michel C., Hervieu M., Borel M. M., Grandin A., Deslandes F., Provost J., Raveau B. Superconductivity in the Bi-Sr-Cu-O system // Zeitschrift für Physik B. Condensed Matter., 1987. V. 68. PP. 421–423.
  6. Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J. Superconductivity at 39 K in Magnesium diboride // Nature. 2001. V. 410. PP. 63–64.
  7. Kamihara Y., Watanabe T., Hirano M., Hosono H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K // J. Am. Chem. Soc. 2008. V. 130. PP. 3296–3297.
  8. Snider E., Dasenbrock-Gammon N., McBride R., Debessai M., Vindana H., Vencatasamy K., Lawler K. V., Salamat A., Dias R. P. Room-temperature superconductivity in a carbonaceous sulfur hydride // Nature. 2020. V. 586. PP. 373–377.
  9. Chao Yao, Yanwei Ma. Superconducting materials: Challenges and opportunities for large-scale applications // iScience. 2021.V. 24. Issue 6. 102541.
  10. Hirsch J. E., Marsiglio F. Nonstandard superconductivity or no superconductivity in hydrides under high pressure // Phys. Rev. B. 2021. V. 103. 134505.
  11. Yanchao Wang, Jian Lv, Li Zhu and Yanming Ma. Crystal structure prediction via particle-swarm optimization // Phys. Rev. B. 2010. V. 82. 094116.
  12. Yan L., Bo T., Liu P.-F., Zhou L., Zhang J., Tang M.-H., Xiao Y.-G. and Wang B.-T. Superconductivity in predicted two dimensional XB6 (X = Ga, In) // J. Mater. Chem. C. 2020. V. 8. PP. 1704–1714.
  13. Liu Y., Sun Y. and Gao P. The superconductivity of N–Si–H compounds at high pressure // Solid State Commun. 2021. V. 329. 114260.
  14. Matsumoto R., Hou Z., Adachi S., Yamamoto S., Tanaka H., Takeya H., Irifune T., Terakura K. and Takano Y. Experimental observation of pressure-induced superconductivity in layered transition-metal chalcogenides (Zr, Hf) GeTe4 explored by a data-driven approach // Chem. Mater. 2021. V. 33. PP. 3602–3610.
  15. Wang Y., Miao M., Lv J., Zhu L., Yin K., Liu H. and Ma Y. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm // J. Chem. Phys. 2012. V. 137. 224108.
  16. Li Y. et al. Pressure-stabilized superconductive yttrium hydrides // Sci. Rep. 2015. V. 5. PP. 1–8.
  17. Troyan I. A. et al. Anomalous high-temperature superconductivity in YH6 // Advanced Materials. 2021. V. 33. Issue 15. 2006832.
  18. Oganov A. R., Lyakhov A. O., Valle M. How Evolutionary Crystal Structure Prediction Works – and Why // Acc. Chem. Res. 2011. V. 44. PP. 227–237.
  19. Liu H. et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure // Proceedings of the National Academy of Sciences. 2017. V. 114 (27). PP. 6990–6995.
  20. Gebaelle Z. M. et al. Synthesis and stability of lanthanum superhydrides // Ang. Chem. 2018. V. 57. Issue 3. PP. 688–692.
  21. Somayazulu M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures // Phys. Rev. Lett. 2019. V. 122. 027001.
  22. Kruglov I. A. et al. Superconductivity of LaH10 and LaH16 polyhydrides // Physical Review B. 2020. V. 101. 024508.
  23. Smith P. F., Wilson M. N., Walters C. R. and Lewin J. D. Intrinsically Stable Conductors. – Proc. 1968 Summer Study on Superconducting Devices and Accelerators. BNL. P. 913.
  24. The Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, June 10 – July 19, 1968, Brookhaven National Laboratory, Upton, NY, has been archived at: https://wpw.bnl.gov/rgupta/1968-summer.
  25. Дергунова Е. А., Курилкин М. О., Алиев Р. Т., Коновалова Н. В. Материаловедение сверхпроводников на основе соединений А-15: учебное пособие. М.: Национальный исследовательский ядерный университет «МИФИ», 2019. 96 с.
  26. Цаплева А. С., Абдюханов И. М., Панцырный В. И., Алексеев М. В., Раков Д. Н. Материаловедение современных технических сверхпроводящих материалов // Физика металлов и металловедение. 2022. Т. 123. № 9. С. 897–928.
  27. Xu X. A review and prospects for Nb3Sn superconductor development // Supercond. Sci. Technol. 2017. V. 30. 093001.
  28. Xu X., Sumption M. D., Peng X. Internally oxidized Nb3Sn superconductor with very fine grain size and high critical current density // Adv. Mater., 2015. V. 27. PP. 1346–1350.
  29. Balachandran S., Tarantini C., Lee P. J., Kametani F., Su Y.-F., Walker B., Starch W. L., Larbalestier D. C. Beneficial influence of Hf and Zr additions to Nb4at%Ta on the vortex pinning of Nb3Sn with and without an O source // Supercond. Sci. Technol. 2019. V. 32. 044006.
  30. Balachandran S., Tarantini C., Starch W. L., Paudel N., Lee P. J., Larbalestier D. C. 60 years on – A new alloy for better Nb3Sn. – Presentaion at Applied Superconductivity Conference (virtual) (presentation ID: Wk2P3–1). 2020. https://snf.ieeecsc.org/files/ieeecsc/slides/Shreyas%20Balachandran_11052020_Wk2P3–1.pdf.
  31. Uglietti D. A review of commercial high temperature superconducting materials for large magnets: from wires and tapes to cables and conductors // Supercond. Sci. Technol. 2019. V. 32. 053001.
  32. Kobayashi S., Yamazaki K., Kato T., Ohkura K., Ueno E., Fujino K., Fujikami J., Ayal N., Kikuchi M., Hayashi K., et al. Controlled over-pressure sintering process of Bi2223 wires // Physica C. 2005. V. 426. PP. 1132–1137.
  33. Kametani F., Shen T., Jiang J., Scheuerlein C., Malagoli A., Di Michiel M., Huang Y., Miao H., Parrell J. A., Hellstrom E. E., Larbalestier D. C. Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density // Supercond. Sci. Technol. 2011. V. 24, 075009.
  34. Jiang J., Starch W. L., Hannion M., Kametani F., Trociewitz U. P., Hellstrom E. E., Larbalestier D. C. Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density // Supercond. Sci. Technol. 2011. V. 24. 082001.
  35. Jiang J., Bradford G., Hossain S. I., Brown M. D., Cooper J., Miller E., Huang Y., Miao H., Parrell J. A., White M., et al. High-performance Bi-2212 round wires made with recent powders // IEEE Trans. Appl. Supercond. 2019. V. 29. 6400405.
  36. Sato K., Kobayashi S., Nakashima T. Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems // Jpn. J. Appl. Phys. 2012. V. 51. 010006.
  37. Xiao L. Y., Dai S. T., Lin L. Z., Zhang J. Y., Guo W. Y., Zhang D., Gao Z. Y., Song N. H., Teng Y. P., Zhu Z. Q., et al. Development of the world’s first HTS power substation // IEEE Trans. Appl. Supercond. 2012. V. 22. 5000104.
  38. Awaji S., Watanabe K., Oguro H., Miyazaki H., Hanai S., Tosaka T., Ioka S. First performance test of a 25 T cryogen-free superconducting magnet // Supercond. Sci. Technol., 2017. V. 30. 065001.
  39. Nakashima T., Kobayashi S., Kagiyama T., Yamazaki K., Kikuchi M., Yamade S., Hayashi K., Sato K., Osabe G., Fujikami J. Overview of the recent performance of DI-BSCCO wire // Cryogenics. 2012. V. 52. PP. 713–718.
  40. Larbalestier D. C., Jiang J., Trociewitz U. P., Kametani F., Scheuerlein C., Dalban-Canassy M., Matras M., Chen P., Craig N. C., Lee P. J., Hellstrom E. E. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T // Nat. Mater. 2014. V. 13. PP. 375–381.
  41. Zhang J., Song Y. T., Liu X. F., Li J. G., Wan Y. X., Ye M. Y., Ding K. Z., Wu S. T., Xu W. W., Wei J. H. Concept design of hybrid superconducting magnet for CFETR Tokamak reactor. 2013 IEEE 25th Symposium on Fusion Engineering (SOFE). (2013), PP. 1–6.
  42. Qin J. G., Wu Y., Li J. G., Dai C., Liu F., Liu H. J., Liu P. H., Li C. S., Hao Q. B., Zhou C., Liu S. Manufacture and test of Bi-2212 cable-in-conduit conductor // IEEE Trans. Appl. Supercond. 2017. V. 27. 4801205.
  43. Shiohara Y., Taneda T., Yoshizumi M. Overview of materials and power applications of coated conductors project // Jpn. J. Appl. Phys. 2012. V. 51. 010007.
  44. Moon S. H., Lee J.-H., Lee H. Recent progress on SuNAM’s coated conductor development; performance, price & utilizing ways. – Presentation at Coated Conductors for Applications, Aspen, USA (presentation ID: IO-16). 2016. https://snf.ieeecsc.org/files/ieeecsc/slides/STP528_Moon.pdf.
  45. Senatore C., Alessandrini M., Lucarelli A., Tediosi R., Uglietti D., Iwasa Y. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors // Supercond. Sci. Technol. 2014. V. 27. 103001.
  46. Tsuchiya K. et al. Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers // Supercond. Sci. Technol. 2021. V. 34. No. 10. 105005.
  47. Dürrschnabel M., Aabdin Z., Bauer M., Semerad R., Prusseit W., Eibl O. DyBa2Cu3O7-x superconducting coated conductors with critical currents exceeding 1000 Acm-1 // Supercond. Sci. Technol. 2012. V. 25. 10500.
  48. Obradors X., Puig T. Coated conductors for power applications: materials challenges // Supercond. Sci. Technol. 2014. V. 27. 044003.
  49. Lee C., Son H., Won Y., Kim Y., Ryu C., Park M., Iwakuma M. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea // Supercond. Sci. Technol. 2020. V. 33. 044006.
  50. Hahn S., Kim K., Kim K., Hu X. B., Painter T., Dixon I., Kim S., Bhattarai K. R., Noguchi S., Jaroszynski J., Larbalestier D. C. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet // Nature. 2019. V. 570. PP. 496–499.
  51. Yanagisawa Y., Kajita K., Iguchi S., Xu Y., Nawa M., Piao R., Takao T., Nakagome H., Hamada M., Noguchi T., et al. 27.6 T generation using Bi-2223/REBCO superconducting coils. – IEEE/CSC & ESAS Supercond. News Forum, 10 (2016). P. STH42. https://snf.ieeecsc.org/media/276-t-generation-using-bi-2223rebco-superconducting-coils.
  52. Berrospe-Juarez E., Zermeno V. M.R., Trillaud F., Gavrilin A. V., Grilli F., Abraimov D. V., Hilton D. K., Weijers H. W. Estimation of losses in the (RE)BCO two-coil insert of the NHMFL 32 T all-superconducting magnet // IEEE Trans. Appl. Supercond. 2018. V. 28, 4602005.
  53. Liu J. H., Wang Q. L., Qin L., Zhou B. Z., Wang K. S., Wang Y. H., Zhang Z. L., Dai Y. M., Liu H., Hu X. N., et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet // Supercond. Sci. Technol., 2020. V. 33. 03LT01.
  54. Yoon S., Kim J., Cheon K., Lee H., Hahn S., Moon S.-H. 26 T 35 mm all-GdBa2Cu3O7-x multi-width no-insulation superconducting magnet // Supercond. Sci. Technol. 2016. V. 29. 04LT04.
  55. Larbalestier D. C., Cooley L. D., Rikel M. O., Polyanskii A. A., Jiang J., Patnaik S., Cai X. Y., Feldmann D. M., Gurevich A., Squitieri A. A., et al. Strongly linked current flow in polycrystalline forms of the superconductor MgB2 // Nature. 2001. V. 410. PP. 186–189.
  56. Ye S., Kumakura H. The development of MgB2 superconducting wires fabricated with an internal Mg diffusion (IMD) process // Supercond. Sci. Technol. 2016. V. 29. Article 113004.
  57. Flukiger R. Advances in MgB2 conductors. Presentation at Applied Superconductivity Conference, Charlotte, USA (presentation ID: 3PLA-02). 2014. https://snf.ieeecsc.org/files/ieeecsc/slides/CRP46_Fl%C3%BCkigerR_3PLA-02_Adv-MgB2-Cond_091814v2.pdf.
  58. Katase T., Ishimaru Y., Tsukamoto A., Hiramatsu H., Kamiya T., Tanabe K., Hosono H. Advantageous grain boundaries in iron pnictide superconductors // Nat. Commun. 2011. V. 2, 409.
  59. Zhang X. P., Oguro H., Yao C., Dong C. H., Xu Z. T., Wang D. L., Awaji S., Watanabe K., Ma Y. W. Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils // IEEE Trans. Appl. Supercond. 2017. V. 27. 7300705.
  60. Wang D. L., Zhang Z., Zhang X. P., Jiang D. H., Dong C. H., Huang H., Chen W. G., Xu Q. J., Ma Y. W. First performance test of a 30 mm iron-based superconductor single pancake coil under a 24 T background field // Supercond. Sci. Technol. 2019. V. 32. 04LT01.
  61. Qian X., Jiang S. L., Ding H. W., Huang P. C., Zou G. H., Jiang D. H., Zhang X. P., Ma Y. W., Chen W. G. Performance testing of the iron-based superconductor inserted coils under high magnetic field // Physica C. 2021. V. 580. 1353787.
  62. Zhang Z., Wang D. L., Wei S. Q., Wang Y. Z., Wang C. T., Zhang Z., Yao H. L., Zhang X. P., Liu F., Liu H. J., Ma Y. W., et al. First performance test of the iron-based superconducting racetrack coils at 10 T // Supercond. Sci. Technol. 2021. V. 34. 035021.
  63. The CEPC Study Group. CEPC Conceptual Design Report. Volume I – Accelerator. – Institute of High Energy Physics (IHEP). 2018. http://cepc.ihep.ac.cn/CDR_v6_201808.pdf
  64. Yazdani-Asrami M., Seyyedbarzegar S. M., Zhang M. and Yuan W. Insulation materials and systems for superconducting powertrain devices in future cryo-electrifed aircraft: part I – material challenges and specifications, and device-level application // IEEE Electr. Insul. Mag. 2022. V. 38. PP. 23–36.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig.1

Жүктеу (389KB)
3. Fig.2

Жүктеу (354KB)
4. Fig.3

Жүктеу (413KB)

© Abdyukhanov I., Terina M., Savelyev I., Tsapleva A., Alekseev M., 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>