Flight controllers for multi-rotor unmanned aerial vehicles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers the creation of flight controllers based on open source software for multi-rotor unmanned aerial vehicles (UAVs) that meet reliability requirements and provide a high degree of flexibility.

Full Text

Restricted Access

About the authors

A. Golubkov

ООО «Радиокомп»

Author for correspondence.
Email: andrew@radiocomp.ru

начальник отдела перспективных разработок

Russian Federation

S. Melyukov

ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»; ООО «Радиокомп»

Email: melyukov.1@mail.ru

кафедра «Системы автоматического и интеллектуального управления», аспирант; инженер-программист

Russian Federation

A. Fomichev

ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»

Email: fomichevav@mai.ru

к.т.н., кафедра «Системы автоматического и интеллектуального управления», доцент

Russian Federation

References

  1. Muhamad A., Panjaitan S. D., Yacoub R. R. Design and development of flight controller for quadcopter drone control // Telecommunications, Computers, and Electricals Engineering Journal (TELECTRICAL). 2024. V. 1. No. 3. PP. 279–291.
  2. Amadi C. A. Design and implementation of a model predictive control on a Pixhawk flight controller: thesis. – Stellenbosch: Stellenbosch University, 2018.
  3. Rico R., Rico-Azagra J., Gil-Martínez M. Hardware and RTOS design of a flight controller for professional applications // IEEE Access. 2022. V. 10. PP. 134870-134883.
  4. Qu X., Wei Y., Liu Y. et al. Design of Automatic Search and Rescue UAV Based on Jetson Nano Combined with PX4 Pixhawk Flight Controller and Color Recognition Technology // 2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE). IEEE, 2024. PP. 460–466.
  5. Chong Y. F., Al-Fadhali N. M. A. MultiWii Based Quadcopter by Using Arduino Controller // Progress in Engineering Application and Technology. 2023. V. 4. No. 1. PP. 221–229.
  6. Nguyen K. D., Ha C. Development of hardware-in-the-loop simulation based on Gazebo and Pixhawk for unmanned aerial vehicles // International Journal of Aeronautical and Space Sciences. 2018. V. 19. PP. 238–249.
  7. Baldi S., Sun D., Xia X. et al. ArduPilot-based adaptive autopilot: Architecture and software-in-the-loop experiments // IEEE Transactions on Aerospace and Electronic Systems. 2022. V. 58. No. 5. PP. 4473–4485.
  8. Levy S. D. Robustness through simplicity: a minimalist gateway to neurorobotic flight // Frontiers in Neurorobotics. 2020. V. 14. P. 16.
  9. Rao M. V. S., Athmika K., Geetha S. et. al. Design and Development of Quadcopter for Agro-Chemical Spray in Agricultural Field // International Research Journal on Advanced Engineering Hub (IRJAEH). 2024. V. 2. No. 05. PP. 1294–1302.
  10. Lienkov S., Myasischev A., Sieliukov O. et al. Checking the Flight Stability of a Rotary UAV in Navigation Modes for Different Firmware // CEUR Workshop Proceedings. 2021. V. 3126. PP. 46–55.
  11. Wang L. Review of the application of open-source flight control in multi-rotor aircraft //Int. Core J. Eng. 2021. V. 7. PP. 261–270.
  12. Pollien B., Garion C., Hattenberger G. et al. Verifying the Mathematical Library of an UAV Autopilot with Frama-C // Formal Methods for Industrial Critical Systems: 26th International Conference, FMICS 2021, Paris, France, August 24–26, 2021. Springer International Publishing, 2021. PP. 167–173.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. PC development algorithm graph

Download (147KB)
3. Fig. 2. PC structure

Download (232KB)
4. Fig. 3. Flight controllers RK-405 (a) and RK-743 (b)

Download (157KB)

Copyright (c) 2025 Golubkov A., Melyukov S., Fomichev A.