Flight controllers for multi-rotor unmanned aerial vehicles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article considers the creation of flight controllers based on open source software for multi-rotor unmanned aerial vehicles (UAVs) that meet reliability requirements and provide a high degree of flexibility.

全文:

受限制的访问

作者简介

A. Golubkov

ООО «Радиокомп»

编辑信件的主要联系方式.
Email: andrew@radiocomp.ru

начальник отдела перспективных разработок

俄罗斯联邦

S. Melyukov

ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»; ООО «Радиокомп»

Email: melyukov.1@mail.ru

кафедра «Системы автоматического и интеллектуального управления», аспирант; инженер-программист

俄罗斯联邦

A. Fomichev

ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»

Email: fomichevav@mai.ru

к.т.н., кафедра «Системы автоматического и интеллектуального управления», доцент

俄罗斯联邦

参考

  1. Muhamad A., Panjaitan S. D., Yacoub R. R. Design and development of flight controller for quadcopter drone control // Telecommunications, Computers, and Electricals Engineering Journal (TELECTRICAL). 2024. V. 1. No. 3. PP. 279–291.
  2. Amadi C. A. Design and implementation of a model predictive control on a Pixhawk flight controller: thesis. – Stellenbosch: Stellenbosch University, 2018.
  3. Rico R., Rico-Azagra J., Gil-Martínez M. Hardware and RTOS design of a flight controller for professional applications // IEEE Access. 2022. V. 10. PP. 134870-134883.
  4. Qu X., Wei Y., Liu Y. et al. Design of Automatic Search and Rescue UAV Based on Jetson Nano Combined with PX4 Pixhawk Flight Controller and Color Recognition Technology // 2024 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE). IEEE, 2024. PP. 460–466.
  5. Chong Y. F., Al-Fadhali N. M. A. MultiWii Based Quadcopter by Using Arduino Controller // Progress in Engineering Application and Technology. 2023. V. 4. No. 1. PP. 221–229.
  6. Nguyen K. D., Ha C. Development of hardware-in-the-loop simulation based on Gazebo and Pixhawk for unmanned aerial vehicles // International Journal of Aeronautical and Space Sciences. 2018. V. 19. PP. 238–249.
  7. Baldi S., Sun D., Xia X. et al. ArduPilot-based adaptive autopilot: Architecture and software-in-the-loop experiments // IEEE Transactions on Aerospace and Electronic Systems. 2022. V. 58. No. 5. PP. 4473–4485.
  8. Levy S. D. Robustness through simplicity: a minimalist gateway to neurorobotic flight // Frontiers in Neurorobotics. 2020. V. 14. P. 16.
  9. Rao M. V. S., Athmika K., Geetha S. et. al. Design and Development of Quadcopter for Agro-Chemical Spray in Agricultural Field // International Research Journal on Advanced Engineering Hub (IRJAEH). 2024. V. 2. No. 05. PP. 1294–1302.
  10. Lienkov S., Myasischev A., Sieliukov O. et al. Checking the Flight Stability of a Rotary UAV in Navigation Modes for Different Firmware // CEUR Workshop Proceedings. 2021. V. 3126. PP. 46–55.
  11. Wang L. Review of the application of open-source flight control in multi-rotor aircraft //Int. Core J. Eng. 2021. V. 7. PP. 261–270.
  12. Pollien B., Garion C., Hattenberger G. et al. Verifying the Mathematical Library of an UAV Autopilot with Frama-C // Formal Methods for Industrial Critical Systems: 26th International Conference, FMICS 2021, Paris, France, August 24–26, 2021. Springer International Publishing, 2021. PP. 167–173.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. PC development algorithm graph

下载 (147KB)
3. Fig. 2. PC structure

下载 (232KB)
4. Fig. 3. Flight controllers RK-405 (a) and RK-743 (b)

下载 (157KB)

版权所有 © Golubkov A., Melyukov S., Fomichev A., 2025