Application of the Davidon – Fletcher – Powell method for finding the parameters of a specified concentration profile during ion implantation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the application of the Davidon – Fletcher – Powell method for finding the minimum of the objective function in the calculation of concentration profile parameters during ion implantation. The developed program has demonstrated high efficiency in determining the optimal parameters, confirming the adequacy of the approach for solving the stated problem.

Full Text

Restricted Access

About the authors

P. Kuznetsov

АО «ГосНИИП»

Author for correspondence.
Email: ps_kuznetsov@mail.ru

к.т.н., заместитель начальника комплекса

Russian Federation, 129226, г. Москва, проспект Мира, 125

References

  1. Анищик В. М., Углов В. В. Модификация инструментальных материалов ионными и плазменными пучками // Минск: БГУ, 2003. 191 с.
  2. Гридчин А. В. Введение в современную микро- и наносистемную технику: учебное пособие // Москва; Вологда: Инфра-инженерия, 2024. 232 с.
  3. Воротынцев В. М., Скупов В. Д. Базовые технологии микро- и наноэлектроники: учебное пособие. М.: Проспект, 2019. 519 с.
  4. Родионов Ю. А. Технологические процессы в микро- и наноэлектронике: учебное пособие. М.; Вологда: Инфра-Инженерия, 2019. 352 с.
  5. Pocaterra M., Ciappa M. TCAD investigation of the transport of carriers deposited by alpha particles in silicon carbide power Schottky devices // Microelectronics Reliability 126 (2021). 114317. https://doi.org/10.1016/j.microrel.2021.114317.
  6. Zhang S., Liu Y., Lv S., Cheng J. Surface modification of polymers by ion irradiation: reactivity principle and application // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume 543, October 2023, 165097. https://doi.org/10.1016/j.nimb.2023.165097.
  7. Yin R., Li C., Zhang B. et. al. Physical mechanism of field modulation effects in ion implanted edge termination of vertical GaN Schottky barrier diodes // Fundamental Research 2 (2022). PP. 629–634. https://doi.org/10.1016/j.fmre.2021.11.027.
  8. Magalhaes S., Mateus R., Dias M. et. al. Modelling the strain build-up in nitrogen implanted tungsten films on silicon substrates // Nuclear Instruments and Methods in Physics Research B 537 (2023). PP. 81–87. https://doi.org/10.1016/j.nimb.2023.02.006.
  9. Jiménez-Riobóo R.J., Gordillo N., Andrés A. et. al. Boron-doped diamond by 9 MeV microbeam implantation: damage and recovery // Microelectronics Reliability 126 (2021). 114317. https://doi.org/10.1016/j.carbon.2023.04.004.
  10. Lerat J.-F., Desrues T., Perchec J. et. al. Boron emitter formation by plasma immersion ion implantation in n-type PERT silicon solar cells // Energy Procedia 92 (2016). PP. 697–701. https://doi.org/10.1016/j.egypro.2016.07.046.
  11. Yamaguchi N., Müller, R. Reichel C. et. al. Plasma immersion ion implantation for tunnel oxide passivated contact in silicon solar cell // Solar Energy Materials & Solar Cells 268 (2024). 112730. https://doi.org/10.1016/j.solmat.2024.112730.
  12. Риссел Х., Руге И. Ионная имплантация. М.: Наука, 1983. - 360 с.
  13. Biersack J.P. Calculation of projected ranges − analytical solutions and a simple general algorithm // Nuclear Instruments and Methods, Volumes 182–183, Part 1, 15 April–1 May 1981. PP. 199−206. https://doi.org/10.1016/0029-554X(81)90688-1.
  14. Холодкова Н. В., Смирнов С. А. Математическое моделирование технологических процессов: учеб. пособие. Иван. гос. хим.-технол. ун-т. Иваново, 2019. 88 с.
  15. Быкадырова Г.В., Ткачев А.Ю., Бормонотов Е.Н., Битюцкая Л.А. Приборнотехнологическое проектирование компонентной базы микро- и наноэлектроники. Воронеж: Издательский дом ВГУ, 2016. 120 с.
  16. Смирнов В. И. Физико-химические основы технологии электронных средств: учебное пособие. Ульяновск: УлГТУ, 2005. 112 с.
  17. Mlazi N. J., Mayengo M., Lyakurwa G., Kichonge B. Mathematical modeling and extraction of parameters of solar photovoltaic module based on modified Newton – Raphson method // Results in Physics 57 (2024) 107364. https://doi.org/10.1016/j.rinp.2024.107364.
  18. Банди Б. Методы оптимизации: вводный курс. М.: Радио и связь, 1988. 128 с.
  19. Bundgaard-Nielsen M., Rønø P. E. A modified Davidon-Fletcher-Powell method for minimizing a function // The Chemical Engineering Journal, Vol. 5, Issue 1, 1973. PP. 103–106. https://doi.org/10.1016/0300-9467(73)85012-9.
  20. Fang B., Zhen Y.-X., Zhang C.-P., Tang Y. Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory // Applied Mathematical Modelling 37 (2013). PP. 1096–1107. http://dx.doi.org/10.1016/j.apm.2012.03.032

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a numerical model for implantation in multilayer structures

Download (152KB)
3. Fig. 2. Block diagram of the Davidon–Fletcher–Powell optimization algorithm [18]

Download (191KB)

Copyright (c) 2025 Kuznetsov P.