Double-Gap Capacitively Loaded Cavity Resonator for a Multibeam Klystron
- Authors: Solyanik V.1, Miroshnichenko A.1, Tsarev V.1, Akafyeva N.1
-
Affiliations:
- СГТУ имени Ю. А. Гагарина
- Issue: No 4 (2025)
- Pages: 50-58
- Section: Microwave electronics
- URL: https://journals.eco-vector.com/1992-4178/article/view/684482
- DOI: https://doi.org/10.22184/1992-4178.2025.245.4.50.58
- ID: 684482
Cite item
Abstract
The article provides the study of electrodynamic and electronic parameters of a capacitively loaded double-gap resonator for a multibeam klystron. The resonator’s design features the mushroom-shaped structure and extra rods along the resonator perimeter. Simulation results were obtained with different sizes of the resonator structure elements.
Full Text

About the authors
V. Solyanik
СГТУ имени Ю. А. Гагарина
Author for correspondence.
Email: journal@electronics.ru
аспирант
Russian FederationA. Miroshnichenko
СГТУ имени Ю. А. Гагарина
Email: journal@electronics.ru
д. т. н., доцент
Russian FederationV. Tsarev
СГТУ имени Ю. А. Гагарина
Email: journal@electronics.ru
д. т. н., профессор
Russian FederationN. Akafyeva
СГТУ имени Ю. А. Гагарина
Email: journal@electronics.ru
к. т. н., доцент
Russian FederationReferences
- Ding Y. et al. An overview of multibeam klystron technology // IEEE Transactions on Electron Devices. 2023. V. 70. No. 6. PP. 2656–2665.
- Галдецкий А. В., Голованов Н. А. Многолучевые клистроны с радиальным расположением лучей // Электроника и микроэлектроника СВЧ: материалы Всерос. науч.-техн. конф. СПб. 2023. С. 4–9.
- Kant D. et al. Design studies for a 2 kW (CW) power L/S band multi beam Klystron // 2018 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2018. PP. 111–112.
- Kumar M. et al. Design of a high frequency miniature multi beam klystron (MBK) // 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011. PP. 321–322.
- Vostrov M. S. Broadband Miniature Multi-Beam Klystron of Two-Centimeter Wavelength Rangewith Bandwidth Not Less Than 300 MHz and Irregularity of Output Power Not More Than 1,5 dB // 2018 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2018. PP. 232–236.
- Kotov A. S., Gelvich E. A., Zakurdayev A. D. Small-size complex microwave devices (CMD) for onboard applications // IEEE transactions on electron devices. 2007. V. 54. No. 5. PP. 1049–1053.
- Smirnov A., Newsham D., Yu D. PBG cavities for single-beam and multi-beam electron devices // Proceedings of the 2003 Particle Accelerator Conference. IEEE, 2003. V. 2. PP. 1153–1155.
- Jain P. K. et al. Study of metallic photonic Band Gap cavity for high power microwave devices // 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009. PP. 1–3.
- Turgaliev V. et al. Small-size low-loss bandpass filters on substrate-integrated waveguide capacitively loaded cavities embedded in low temperature co-fired ceramics // J. Ceram. Sci. Technol. 2015. V. 6. No. 4. PP. 305–314.
- Tomassoni C. et al. Substrate-integrated waveguide filters based on mushroom-shaped resonators // International Journal of Microwave and Wireless Technologies. 2016. V. 8. No. 4–5. PP. 741–749.
- Sirci S., Martínez J. D., Boria V. E. A novel magnetic coupling for miniaturized bandpass filters in embedded coaxial SIW // Applied sciences. 2019. V. 9. No. 3. P. 394.
Supplementary files
