Double-Gap Capacitively Loaded Cavity Resonator for a Multibeam Klystron

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article provides the study of electrodynamic and electronic parameters of a capacitively loaded double-gap resonator for a multibeam klystron. The resonator’s design features the mushroom-shaped structure and extra rods along the resonator perimeter. Simulation results were obtained with different sizes of the resonator structure elements.

Texto integral

Acesso é fechado

Sobre autores

V. Solyanik

СГТУ имени Ю. А. Гагарина

Autor responsável pela correspondência
Email: journal@electronics.ru

аспирант

Rússia

A. Miroshnichenko

СГТУ имени Ю. А. Гагарина

Email: journal@electronics.ru

д. т. н., доцент

Rússia

V. Tsarev

СГТУ имени Ю. А. Гагарина

Email: journal@electronics.ru

д. т. н., профессор

Rússia

N. Akafyeva

СГТУ имени Ю. А. Гагарина

Email: journal@electronics.ru

к. т. н., доцент

Rússia

Bibliografia

  1. Ding Y. et al. An overview of multibeam klystron technology // IEEE Transactions on Electron Devices. 2023. V. 70. No. 6. PP. 2656–2665.
  2. Галдецкий А. В., Голованов Н. А. Многолучевые клистроны с радиальным расположением лучей // Электроника и микроэлектроника СВЧ: материалы Всерос. науч.-техн. конф. СПб. 2023. С. 4–9.
  3. Kant D. et al. Design studies for a 2 kW (CW) power L/S band multi beam Klystron // 2018 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2018. PP. 111–112.
  4. Kumar M. et al. Design of a high frequency miniature multi beam klystron (MBK) // 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011. PP. 321–322.
  5. Vostrov M. S. Broadband Miniature Multi-Beam Klystron of Two-Centimeter Wavelength Rangewith Bandwidth Not Less Than 300 MHz and Irregularity of Output Power Not More Than 1,5 dB // 2018 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2018. PP. 232–236.
  6. Kotov A. S., Gelvich E. A., Zakurdayev A. D. Small-size complex microwave devices (CMD) for onboard applications // IEEE transactions on electron devices. 2007. V. 54. No. 5. PP. 1049–1053.
  7. Smirnov A., Newsham D., Yu D. PBG cavities for single-beam and multi-beam electron devices // Proceedings of the 2003 Particle Accelerator Conference. IEEE, 2003. V. 2. PP. 1153–1155.
  8. Jain P. K. et al. Study of metallic photonic Band Gap cavity for high power microwave devices // 2009 Applied Electromagnetics Conference (AEMC). IEEE, 2009. PP. 1–3.
  9. Turgaliev V. et al. Small-size low-loss bandpass filters on substrate-integrated waveguide capacitively loaded cavities embedded in low temperature co-fired ceramics // J. Ceram. Sci. Technol. 2015. V. 6. No. 4. PP. 305–314.
  10. Tomassoni C. et al. Substrate-integrated waveguide filters based on mushroom-shaped resonators // International Journal of Microwave and Wireless Technologies. 2016. V. 8. No. 4–5. PP. 741–749.
  11. Sirci S., Martínez J. D., Boria V. E. A novel magnetic coupling for miniaturized bandpass filters in embedded coaxial SIW // Applied sciences. 2019. V. 9. No. 3. P. 394.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Design of a double-gap capacitively loaded volume resonator. Main dimensions: A = 25 mm, H = 6.5 mm, D = 13 mm, d = 1.4 mm, l = 1.7 mm, a = 0.7 mm, δ = 0.3 mm, ∆ = 3 mm, d1 = 1 mm, hs = 3.45 mm

Baixar (148KB)
3. Fig. 2. Spectral characteristics of the resonator at different values of the radius of the rods along the perimeter: a - π-mode, relative rod radius δ / ∆: 1) 0.13; 2) 0.17; 3) 0.18; 4) 0.2; 5) 0.23; b - π-mode, relative radius of rods δ / ∆: 1) 0.27; 2) 0.23; 3) 0.18; 4) 0.17; 5) 0.13; c - 2π-mode, relative radius of rods δ / ∆: 1) 0.13; 2) 0.17; 3) 0.18; 4) 0.2; 5) 0.23

Baixar (96KB)
4. Fig. 3. Results of calculation of the electrodynamic parameters of the resonator depending on the relative length of the support rod hs / H: a - frequency dependences; b - dependences of the characteristic impedance; c - dependences of the intrinsic goodness of fit.

Baixar (85KB)
5. Fig. 4. Dependences of frequency, intrinsic goodness of fit (a) and characteristic impedance (b) on the relative length of the gap

Baixar (81KB)
6. Fig. 5. Dependences of the interaction coefficient M and relative electronic conductivity Ge / G0 on the accelerating voltage for the first three modes of the resonator: a - mode No. 1; b - mode No. 2; c - mode No. 3.

Baixar (180KB)

Declaração de direitos autorais © Solyanik V., Miroshnichenko A., Tsarev V., Akafyeva N., 2025