Chasing excellence: from deep machine learning to artificial intelligence in Maker-Ray AOI systems. Part 2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In the first part of the article, published in «ELECTRONICS: Science, Technology, Business» No. 10/2023 journal, the effectiveness of the use of artificial intelligence (AI) was substantiated as the next step in the development of machine learning algorithms in image analysis. The second part discusses the theory and practice of building a virtual model for the operation of artificial intelligence used in Maker-Ray optical inspection systems.

全文:

受限制的访问

作者简介

I. Rozhkov

ООО «Новые Технологии»

编辑信件的主要联系方式.
Email: rozhkov@nt-smt.ru

генеральный директор, управляющий партнер

俄罗斯联邦

A. Garanin

ООО «Новые Технологии»

Email: garanin@nt-smt.ru

технический директор, управляющий партнер

俄罗斯联邦

D. Podolsky

ООО «Новые Технологии»

Email: podolsky@nt-smt.ru

ведущий менеджер по продуктам

俄罗斯联邦

补充文件

附件文件
动作
1. JATS XML
2. Photo 1

下载 (52KB)
3. Fig. 1. General model of AI training

下载 (512KB)
4. Fig. 2. Statistical results of measuring the number of red pixels R: a - number of red pixels R on the red line; b - number of red pixels R in the other area

下载 (19KB)
5. Fig. 3. Algorithm of applying fragmentation and pixel transformation function

下载 (33KB)
6. Fig. 4. Illustration of the description of the transformation function f(x, y)

下载 (901KB)
7. Fig. 5. Methodology for increasing the informativeness of images

下载 (791KB)
8. Fig. 6. Formation of image classes

下载 (18KB)
9. Fig. 7. Dropout method

下载 (20KB)

版权所有 © Rozhkov I., Garanin A., Podolsky D., 2024