Atmospheric Optical Communication Channel Based on Scattered Radiation in the UV-wavelength Range in the Daytime and at Night

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A model of the atmospheric optical communication channel based on scattered radiation in the UV wavelength range is considered. The model is based on the Monte Carlo method algorithms for the local and modified double local estimate to calculate the impulse response of the optical communication channel. The bit error rate in the day and at night is estimated for the wavelength range from 200 to 400 nm and information coding using the digital pulse interval modulation (DPIM). The results demonstrate that the wavelength λ = 295 nm is better to arrange a long-range communication using the receiving system under study in the daytime, whereas the wavelength λ = 395 nm is better at night.

Full Text

Restricted Access

About the authors

M. V. Tarasenkov

Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: photonics@technosphera.ru
ORCID iD: 0000-0002-8826-761X
Scopus Author ID: 55144149500
ResearcherId: P-7844-2014

Cand. Phys.-math. Sci.

Russian Federation, Tomsk

S. A. Peshkov

Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences

Email: photonics@technosphera.ru

Student

Russian Federation, Tomsk

E. S. Poznakharev

Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences

Email: photonics@technosphera.ru
Scopus Author ID: 57195951777

Junior Researcher

Russian Federation, Tomsk

References

  1. Sunstein D. E. A scatter communications link at ultraviolet frequencies. B.Sc. thesis. Dept. Elect. Eng., Massachusetts Inst. Technol., Cambridge, MA. USA. 1968. http://hdl.handle.net/1721.1/13670.
  2. Harvey G. L. A survey of ultraviolet communication systems. Naval Research Laboratory Technical Report. Washington D. C. March 13, 1964.
  3. Vavoulas A., Sandalidis H. G., Chatzidiamantis N. D., Xu Z., Karagiannidis G. K. A Survey on Ultraviolet C-Band (UV–C) Communications. IEEE Communication surveys & tutorials. 2019; 21(3): 2111–2133. doi: 10.1109/COMST.2019.2898946.
  4. Zhanwei Liu, Huang Yiwen, Haigang Liu, and Xianfeng Chen. Non-line-of-sight optical communication based on orbital angular momentum. Opt. Lett. 2021; 46(20): 5112–5115. doi: 10.1364/OL.441441.
  5. Hamza A. S., Deogun J. S. and Alexander D. R. Classification Framework for Free Space Optical Communication Links and Systems. IEEE Communications Surveys & Tutorials. 2019; 21(2): 1346–1382. doi: 10.1109/COMST.2018.2876805.
  6. Arya S. and Chung Y. H. Novel Optical Scattering-Based V2V Communications With Experimental Analysis. IEEE Transactions on Intelligent Transportation Systems. 2022; doi: 10.1109/TITS.2022.3145437.
  7. Drost R. J., Sadler B. M. Survey of ultraviolet non-line-of-sight communications. Semiconductor Science and Technology. 2014; 29(8). doi: 10.1088/0268-1242/29/8/084006.
  8. Abramochkin V. N., Belov V. V., Gridnev Yu. V., Kudryavcev A. N., Tarasenkov M. V., Fedosov A. V. Optiko-elektronnaya svyaz' v atmosfere na rasseyannom lazernom izluchenii. Polevye eksperimenty. Svetotekhnika. 2017;4:24–30. (In Russ.). Абрамочкин В. Н., Белов В. В., Гриднев Ю. В., Кудрявцев А. Н., Тарасенков М. В., Федосов А. В. Оптико-электронная связь в атмосфере на рассеянном лазерном излучении. Полевые эксперименты. Светотехника. 2017; 4: 24–30.
  9. Ding J., Mei H., I C–L., Zhang H., Liu W. Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies. Sensors. 2020; 20(19): 5476. doi: 10.3390/s20195476.
  10. Tadayyoni H. and Uysal M. Ultraviolet Communications for Ground-to-Air Links. 2019. 27th Signal Processing and Communications Applications Conference (SIU). 2019; 1–4, doi: 10.1109/SIU.2019.8806490.
  11. Gang Chen, Feras Abou-Galala, Zhengyuan Xu, and Brian M. Sadler. Experimental evaluation of LED-based solar blind NLOS communication links. Opt. Express. 2008; 16: 15059–15068. doi: 10.1109/SIU.2019.8806490.
  12. Pengfei Luo, Min Zhang, Dahai Han, and Qing Li. Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters. Opt. Express. 2012; 20(21): 23489–23501. https://doi.org/10.1364/OE.20.023489.
  13. Gang Chen, Zhengyuan Xu, and Brian M. Sadler. Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. Opt. Express. 2010; 18(10): 10500–10509. https://doi.org/10.1364/OE.18.010500.
  14. Peng D., Shi J., Peng G. et al. An ultraviolet laser communication system using frequency-shift keying modulation scheme. Optoelectron. Lett. 2015; 11: 65–68. https://doi.org/10.1007/s11801-015-4196-x.
  15. Linchao Liao, Zening Li, Tian Lang, and Gang Chen. UV LED array based NLOS UV turbulence channel modeling and experimental verification. Opt. Express. 2015; 23(17): 21825–21835. https://doi.org/10.1364/OE.23.021825.
  16. Ding H., Chen G., Majumdar A. K., Sadler B. M. and Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication. IEEE Journal on Selected Areas in Communications. 2009; 27(9): 1535–1544. doi: 10.1109/JSAC.2009.091203.
  17. Drost Robert J., & Sadler Brian M. Survey of ultraviolet non-line-of-sight communications. Semiconductor Science and Technology. 2014; 29(8): 11. doi:101088/0268-1242/29/8/084006.
  18. Yu Sun and Yafeng Zhan. Closed-form impulse response model of non-line-of-sight single-scatter propagation. J. Opt. Soc. Am. A. 2016; 33(4): 752–757. http://dx.doi.org/10.1364/JOSAA.33.000752.
  19. Mohamed A. Elshimy and Steve Hranilovic. Non-line-of-sight single-scatter propagation model for noncoplanar geometries. J. Opt. Soc. Am. A. 2011; 28(3): 420–428. https://doi.org/10.1364/JOSAA.28.000420.
  20. Robert J. Drost, Terrence J. Moore, and Brian M. Sadler. UV communications channel modeling incorporating multiple scattering interactions. J. Opt. Soc. Am. A. 2011; 28(4): 686–695. https://doi.org/10.1364/JOSAA.28.000686.
  21. Gang Chen, Zhengyuan Xu, Haipeng Ding, and Brian M. Sadler. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express. 2009; 17(5): 3929–3940. https://doi.org/10.1364/OE.17.003929
  22. Qunfeng He, Brian M. Sadler, Zhengyuan Xu. Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications. Free-Space Laser Communications IX: proc. SPIE of 2009; 7464: 74640H. https://doi.org/10.1117/12.826301.
  23. Xu C. and Zhang H. Packet error rate analysis of IM/DD systems for ultraviolet scattering communications. MILCOM 2015–2015. IEEE Military Communications Conference. Tampa, FL. 2015; pp. 1188–1193, doi:0.1109/MILCOM.2015.7357607.
  24. Ghassemlooy Z., Hayes A. R., Seed N. L. and Kaluarachchi E. D. Digital pulse interval modulation for optical communications. IEEE Communications Magazine. 1998; 36(12): 95–99. doi: 10.1109/35.735885.
  25. Jing Ma, Yijun Jiang, Siyuan Yu, Liying Tan, Wenhe Du. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Optics Communications. 2010; 283(2): 237–242. https://doi.org/10.1016/j.optcom.2009.10.007.
  26. Aldibbiat N. M., Ghassemlooy Z., McLaughlin R. Error performance of dual header pulse interval modulation (DH-PIM) in optical wireless communications. IEE Proceedings – Optoelectronics. 2001; 148(2): 91–96. doi: 10.1049/ip-opt:20010451.
  27. Zongmin Hu, Junxiong Tang. Performance of digital pulse interval modulation of atmospheric optical wireless communication system. Optical Transmission, Switching, and Subsystems II: proc. SPIE. 2005; 5625. https://doi.org/10.1117/12.574827.
  28. Noshad M., Brandt-Pearce M. and Wilson S. G. NLOS UV Communications Using M-ary Spectral-Amplitude-Coding. IEEE Transactions on Communications. 2013; 61(4): 1544–1553. doi: 10.1109/TCOMM.2013.020813.120371.
  29. Hongwei Yin, Honghui Jia, Hailiang Zhang, Xiaofeng Wang, Shengli Chang, Juncai Yang. Extending the data rate of non-line-of-sight UV communication with polarization modulation. Unmanned/Unattended Sensors and Sensor Networks IX: Proc. SPIE. 2012; 8540: 85400I. https://doi.org/10.1117/12.974284.
  30. Jinlong Zhang. Modulation analysis for outdoors applications of optical wireless communications. WCC 2000 – ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420). 2000; 2: 1483–1487. doi: 10.1109/ICCT.2000.890940.
  31. Belov V. V., Juwiler I., Blaunstein N., Tarasenkov M. V., Poznakharev E. S. NLOS Communication: Theory and Experiments in the Atmosphere and Underwater. Atmosphere. 2020, 11(1122). 15 p. https://doi.org/10.3390/atmos11101122
  32. Kneizys F. X., Shettle E. P., Anderson G. P., Abreu L. W., Chetwynd J. H., Selby J. E.A., Clough S. A., Gallery W. O. User Guide to LOWTRAN-7. – ARGL-TR-86–0177. ERP 1010. Hansom AFB. MA 01731. 1988. 137 p.
  33. Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere. Applied optics. 1995; 34(15): 2765–2773. https://doi.org/10.1364/AO.34.002765.
  34. Reilly D. M. Atmospheric optical communications in the middle ultraviolet. M.S. thesis. Massachusetts Institute of Technology. 1976; http://hdl.handle.net/1721.1/27480.
  35. Voigt S., Orphal J., Bogumil K., Burrows J. P. The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chemistry. 2001; 143(1): 1–9. https://doi.org/10.1016/S1010-6030(01)00480-4.
  36. https://katodnv.com
  37. Marchuk G. I., Mihajlov G. A., Nazaraliev M. A., Darbinyan R. A., Kargin B. A., Elepov B. S. Metod Monte-Karlo v atmosfernoj optike. – Novosibirsk: Nauka. 1976. 284p. (In Russ.). Марчук Г. И., Михайлов Г. А., Назаралиев М. А., Дарбинян Р. А., Каргин Б. А., Елепов Б. С. Метод Монте-Карло в атмосферной оптике. – Новосибирск: Наука. 1976. 284 с.
  38. Belov V. V., Tarasenkov M. V. Tri algoritma statisticheskogo modelirovaniya v zadachah opticheskoj svyazi na rasseyannom izluchenii i bistaticheskogo zondirovaniya. Optika atmosfery i okeana. 2016; 29(05): 397–403. doi: 10.15372/AOO20160506. (In Russ.). Белов В. В., Тарасенков М. В. Три алгоритма статистического моделирования в задачах оптической связи на рассеянном излучении и бистатического зондирования. Оптика атмосферы и океана. 2016; 29(05): 397–403. doi: 10.15372/AOO20160506.
  39. Gueymard C. A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy. 2004; 76(4): 423–453. https://doi.org/10.1016/j.solener.2003.08.039.
  40. Miller S. D. and Turner R. E. A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications. IEEE Transactions on Geoscience and Remote Sensing. 2009; 47(7): 2316–2329. doi: 10.1109/TGRS.2009.2012696.
  41. Tarasenkov M. V., Belov V. V., and Poznakharev E. S. Estimation of optimal wavelengths for atmospheric non-line-of-sight optical communication in the UV range of the spectrum in daytime and at night for baseline distances from 50 m to 50 km. J. Opt. Soc. Am. A. 2022; 39(2): 177–188. https://doi.org/10.1364/JOSAA.440875.
  42. Lotova G. Z. Modification of the «double local estimate» of the Monte-Carlo method in radiation transfer theory. Rus. J. Numerical Analysis and Mathematical Modeling. 2011; 26(5): 491–500. https://doi.org/10.1515/rjnamm.2011.027.
  43. Belov V. V., Tarasenkov M. V., Piskunov K. P. Parametricheskaya model' solnechnoj dymki v vidimoj i UF-oblasti spektra. Optika atmosfery i okeana. 2010; 23(04): 294–297. (In Russ.). Белов В. В., Тарасенков М. В., Пискунов К. П. Параметрическая модель солнечной дымки в видимой и УФ-области спектра. Оптика атмосферы и океана. 2010; 23(04): 294–297.
  44. Perenos radiacii v rasseivayushchih i pogloshchayushchih atmosferah. Standartnye metody scheta / Red. Zh. Lenobl'; Per. c angl. Zh. K. Zolotovoj; pod red. K. S. Shifrina. – L.: Gidrometeoizdat. 1990. 263 p. (In Russ.). Перенос радиации в рассеивающих и поглощающих атмосферах. Стандартные методы счета / Ред. Ж. Ленобль; Пер. c англ. Ж. К. Золотовой; под ред. К. С. Шифрина. – Л.: Гидрометеоиздат. 1990. 263 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometric layout of the problem statement.

Download (166KB)
3. Fig. 2. Diagrams of algorithms used for impulse response modeling. (a) Monte Carlo algorithm with the local estimates at the collision points, (b) modified double local estimate algorithm

Download (128KB)
4. Fig. 3. Dependence of the bit error rate Pe on the baseline distance YN at the fixed wavelengths λ for the day (a) and for the night (b)

Download (222KB)

Copyright (c) 2023 Tarasenkov M.V., Peshkov S.A., Poznakharev E.S.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies