Integrated Optical C-NOT Gates: Estimation of the Main Parameters for Practical Design

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The influence of deviation of the beam splitter parameters on the operation of a quantum photon gate in an integrated optical version is considered. It is shown that the required accuracy is quite achievable for electro-optical control in the X-splitter geometry. The estimated length of the device demonstrates its possible implementation even on the substrates with a length of 3 inches.

Full Text

Restricted Access

About the authors

V. M. Petrov

Saint-Petersburg State University

Author for correspondence.
Email: photonics@technosphera.ru
ORCID iD: 0000-0002-8523-0336

Doctor of Physical and Mathematical Sciences (Radiophysics), D.F.-M.S. (Optics), Professor, Department of General Physics

Russian Federation, Saint-Petersburg

D. A. Koroteev

National Research University ITMO

Email: photonics@technosphera.ru
ORCID iD: 0000-0002-5489-4017

Student, Department of Photonics

Russian Federation, Saint-Petersburg

D. A. Semisalov

National Research University ITMO

Email: photonics@technosphera.ru
ORCID iD: 0000-0003-1757-6519

Student, Department of Photonics

Russian Federation, Saint-Petersburg

V. S. Strashilin

National Research University ITMO

Email: photonics@technosphera.ru
ORCID iD: 0000-0002-0655-0199

Student, Department of Photonics

Russian Federation, Saint-Petersburg

D. S. Khlusevich

National Research University ITMO

Email: photonics@technosphera.ru
ORCID iD: 0000-0002-8298-9451

Student, Department of Photonics

Russian Federation, Saint-Petersburg

M. I. Yakovlev

National Research University ITMO

Email: photonics@technosphera.ru

Student, Institute of Laser Technologies

Russian Federation, Saint-Petersburg

M. V. Parfenov

A. F. Ioffe Physical and Technical Institute

Email: photonics@technosphera.ru
ORCID iD: 0000-0003-3867-9007

Junior Researcher, Department of Quantum Electronics

Russian Federation, Saint-Petersburg

References

  1. O’Brien J. L., Pryde G. J., White A. G., Ralph T. C., Branning D. Demonstration of all-optical quantum controlled-NOT gate. Letters to Nature. 2003: 426, 264–267. doi: 10.1038/nature02054.
  2. Ding Z. Y., Yang H., Yuan H., Wang D., Yang J., Ye l. Experimental investigations of linear-antropy-based uncertainty relations in all-optical systems. Phys. Rev. A. 2020;101:022116. DOI: https://doi.org/10.1103/PhysRevA.101.022116.
  3. Gao X., Zhang Y., D’Errico A., Heshami K., Karimi E. High-speed imaging of spatiotemporal correlation in Hong-Ou-Mandel interference. Optics Express. 2022;30(11): 19456–19464. doi: 10.1364/OE.456433.
  4. Stefanov A., Zbinden H., Gisin N., Suarez A. Quantum entanglement with acousto-optic modulators: Two-photon beats and Bell experiments with moving beam splitters. Phys. Rev. A. 2003; 67: 042115. doi: 10.1103/PhysRevA.67.042115.
  5. Petrov V. M., Shamrai A. V., Il’ichev I. V., Agruzov P. M., Lebedev V. V. Broadband integrated optical modulators: advances and perspectives. UFN. 2021; 191(7):760–782. DOI: https://doi.org/10.3367/UFNr.2020.11.038871.
  6. Hirari A., Matsumote Y., Sato T., Kawai T. et all. Optical multimode interference couplers of Ti: LiNbO3 waveguides and electrical tuning of power splitting ratio. Optics Communications. 2021;501:127325. doi: 10.1016/j.optcom.2021.127325.
  7. Zhang M., Feng L., Li M., Chen Y. et all. Supercompact Photonic Quantum Logic Gate on a Silicon Chip, Phys. Rev. Letters 126 (2021) 130501. DOI: https://doi.org/10.1103/PhysRevLett.126.130501.
  8. Lebedev V. V., Petrov V. M., Ilichev I. V., Agruzov P. M., Shamray A. V. Istochnik kvantovogo shuma na osnove detektirovaniya drobovogo shuma balansnogo fotopriyemnika s upravlyayemym integralno-opticheskim svetodelitelem. Pisma v ZhTF. 2021; 47(21): 10–12. DOI: https://doi.org/10.21883/PJTF.2021.21.51620.18870.(In Russ.). Лебедев В. В., Петров В. М., Ильичев И. В., Агрузов П. М., Шамрай А. В. Источник квантового шума на основе детектирования дробового шума балансного фотоприемника с управляемым интегрально-оптическим светоделителем. Письма в ЖТФ. 2021;47(21): 10–12. DOI: https://doi.org/10.21883/PJTF.2021.21.51620.18870.
  9. Petrov V., Medvedev A., Liokumovich L., Miazin A. Fiber-optic polarization interferometric sensor for precise electric field measurements. International Journal of Modern Physics A. 2016; 31(2&3): 1641032–1–1. doi: 10.1142/S0217751X16410323.
  10. Petrov V. M., Shamrai A. V., Il’ichev I. V., Agruzov P. M., Lebedev V. V., Gerasimenko N. D., Gerasimenko V. S. National Microwave Integrateed Optical Modulators for Quantum Communication. Photonics Russia. 2020;14(5): 414–422. doi: 10.22184/1993-7296.FRos.2020.14.5.414.423.
  11. Vashukevich E. A., Lebedev V. V., Ilichev I. V., Agruzov P. M., Shamrai A. V., Petrov V. M., Golubeva T. Yu. Broadband Chip-Based Source of Quantum Noise with Electrically Controllable Beam Splitter. Phys. Rev. Applied. 2022;17(6) 064039. doi: 10.1103/PhysRevApplied.17.064039.
  12. Petrov V. M., Shamray A. V., Ilyichev I. V., Gerasimenko N. D., Gerasimenko V. S., Agruzov P. M., Lebedev V. V. Generation of Optical Frequency Harmonics for Quantum Communication Systems at Side Frequencies. Photonics Russia. 2020;14(7):570–582. doi: 10.22184/1993-7296.FRos.2020.14.7.570.582.
  13. Nikonorov N. V., Petrov V. M. Golograficheskie opticheskie komponenty na osnove fotorefraktivnyh kristallov i styokol: sravnitel’nyj analiz i perspektivy razvitiya. Optika i spektroskopiya. 2021; 129(4): 385–392. doi: 10.21883/OS.2021.04.50764.290-20. (In Russ.). Никоноров Н. В., Петров В. М. Голографические оптические компоненты на основе фоторефрактивных кристаллов и стекол: сравнительный анализ и перспективы развития. Оптика и спектроскопия. 2021;129(44): 385–392. doi: 10.21883/OS.2021.04.50764.290-20.
  14. Martin A., Alibart O., De Micheli M. P., Ostrowsky D. B., Tanzilli S. A quantum relay chip based on telecommunication integrated optics technology. New Journal of Physics. 2012;4: 025002. doi: 10.1088/1367-2630/14/2/025002.
  15. Smith B. J., Kundis D., Thomas-Peter N., Smith P. G. R., Walmsley I. A. Phase-controlled integrated photonic quantum circuits. Optics Express. 2009;17(16):13516–13525. doi: 10.1364/OE.17.013516.
  16. Wen J., Li K., Gong Y., Copner B., Hughes B. et all. Numerical investigations of on-chip wavelength conversion based on InP/In1-xGaxAsyP1-y semiconductor waveguide platforms, Optics Communications. 2020;473:12592. doi: 10.1016/j.optcom.2020.125921.
  17. Yue J., Wang C., Lin H., Ding S. et all. Interlayer directional coupling thermo-optic waveguide switches based on functionalized epoxy-crosslinking polymers. Optics Express. 2022;30(9):13931–13941. doi: 10.1364/OE.451063.
  18. Johansson J. R., Nation P. D., Nori F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comp. Phys. Comm. 2013;184:1234. doi: 10.1016/j.cpc.2012.11.019.
  19. Knill E., Laflamme R., Milburn G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001). https://doi.org/10.1038/35051009.
  20. Hong C. K., Ou Z. Y., Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987;59(18):2044–2046. doi: 10.1103/PhysRevLett.59.2044.
  21. Koroteev D. A., Gerasimenko V. S., Gerasimenko N. D., Petrov V. M. The Role of Leaky Modes in the Operation of Devices Based on Integrated-Optical Mach-Zehnder Interferometers. Photonics Russia. 2022;16(3):236–245. doi: 10.22184/1993-7296.FRos.2022.16.3.236.244.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. C-NOT gate circuit in an integrated optical design (not on a scale): Ain-Fin – input waveguides, Aout-Fout – output waveguides, BS1–BS5 – the beam splitters made in the form of integrated optical X-couplers. The beam splitters BS1, BS5 have a count-down ratio of 1 / 2, the beam splitters BS2–BS4 have a count-down ratio of 1 / 3 (the letter π indicates the availability of a phase shift in this channel; blue color shows the electrodes that allow fine count-down ratio adjustment; δL is the length of the linear waveguide section; ΔХ is the length of the rounded waveguide section; ΔL is the length of the beam splitter section))

Download (223KB)
3. Fig. 2. All possible options and probabilities of occurrence of the C-NOT gate output states when two photons achieve the gate inputs (the case of correct gate activation is highlighted with a blue vertical bar)

Download (220KB)
4. Fig. 3. Graphs of dependences of the given state probability at the output of the beam splitter 1/2 on the deviation θ and ϕ from the given value

Download (141KB)
5. Fig. 4. Graph of dependences of the given state probability at the output of the beam splitter 1/3 on the deviation θ from the given value

Download (83KB)
6. Fig. 5. Graphs of dependences of the given state probability at the output of the beam splitter 1/3 on the deviation ϕ from the given value

Download (114KB)
7. Fig. 6. Graphs of dependences of the given state probability at the output of the beam splitters 1 / 2 on the deviation θ from the given value

Download (137KB)
8. Fig. 7. Graphs of dependences of the given state probability at the output of the beam splitters 1/2 on the deviation ϕ from a given value

Download (164KB)
9. Fig. 8. Graph of dependences of the given state probability at the output of the beam splitter 1/3 on the deviation θ

Download (86KB)
10. Fig. 9. Graph of dependences of the given state probability at the output of the beam splitter 1/3 on the deviation ϕ

Download (127KB)

Copyright (c) 2023 Petrov V.M., Koroteev D.A., Semisalov D.A., Strashilin V.S., Khlusevich D.S., Yakovlev M.I., Parfenov M.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies