High-frequency Ηarmonic Mode Locking in a Frequency-Shifted Fiber Ring Laser With an Acousto-Optic Modulator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possible development of a soliton ring laser with the hybrid harmonic mode locking that provides the generation of a multi-GHz pulse sequence in combination with a high level of supermode noise suppression and low time jitter, is demonstrated. The mode locking is based on the effect of intracavity frequency shift. The development is based on the assumption that, under certain conditions, an acousto-optic frequency shift, supplemented by the spectral filtration, can lead to stabilization and an increase in the quality of a high-frequency pulse sequence.

Full Text

Restricted Access

About the authors

Pavel A. Itrin

Ulyanovsk State University

Author for correspondence.
Email: itrin@mail.ru
ORCID iD: 0000-0002-7198-0646

Junior Researcher, Post-graduate student, S. P. Kapitsa Nonlinear and Microwave Photonics Laboratory

Russian Federation, Ulyanovsk

Dmitry I. Sementsov

Ulyanovsk State University

Email: itrin@mail.ru
ORCID iD: 0000-0001-6760-0156

Dr. of Sciences (Phyth.&Math.), Professor, S. P. Kapitsa Nonlinear and Microwave Photonics Laboratory

Russian Federation, Ulyanovsk

Andrey B. Petrov

Nordlase Ltd.

Email: a.petrov@nordlase.ru
ORCID iD: 0000-0001-9219-1040

Cand. of Sciences (Engin.), engineer

Russian Federation, Saint-Petersburg

Mikhail S. Kozlyakov

Nordlase Ltd.

Email: m.kozliakov@nordlase.ru
ORCID iD: 0000-0003-2616-4532

engineer

Russian Federation, Saint-Petersburg

Valeria A. Ribenek

Ulyanovsk State University

Email: itrin@mail.ru
ORCID iD: 0000-0002-9233-5339

Junior Researcher, Post-graduate student, S. P. Kapitsa Nonlinear and Microwave Photonics Laboratory

Russian Federation, Ulyanovsk

References

  1. Haus H. A., & Wong W. S. Solitons in optical communications. Reviews of modern physics. 1996;68(2): 423.
  2. Schliesser A., Picqué N., Hänsch T. W. Mid-infrared frequency combs. Nature Photonics. 2012;6: 440–449.
  3. Fermann M. E., & Hartl I. Ultrafast fibre lasers. Nature photonics. 2013;7(11): 868.
  4. Chernysheva M., Rozhin A., Fedotov Y., Mou C., Arif R., Kobtsev S. M., & Turitsyn S. Carbon nanotubes for ultrafast fibre lasers. Nanophotonic. 2017;6(1): 1–30.
  5. Lecaplain C. & Grelu P. Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser. Optics express. 2013;21(9):10897–10902.
  6. Trikshev A. I., Kamynin V. A., Tsvetkov V. B., & Itrin P. A. Passive harmonic mode-locking in an erbium-doped fibre laser. Quantum Electronics. 2018; 48(12):1109.
  7. Huang Q., Huang Z., Al Araimi M., Rozhin A. & Mou C. 2.4 GHz L-band passively harmonic mode locked Er-doped fiber laser based on carbon nanotubes film. IEEE Photonics Technology Letters. 2019.
  8. Sobon G., Sotor J., & Abramski K. M. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Applied Physics Letters. 2012; 100(16): 161109.
  9. Fodil R. S., Amrani F., Yang C., Kellou A. & Grelu P. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser. Physical Review A. 2016; 94(1): 013813.
  10. Mao D., Liu X., Sun Z., Lu H., Han D., Wang G. & Wang F. Flexible high-repetition-rate ultrafast fiber laser. Scientific reports. 2013;3:3223.
  11. Korobko D. A., Fotiadi A. A. & Zolotovskii I. O. Mode-locking evolution in ring fiber lasers with tunable repetition rate. Optics express. 2017; 25(18): 21180–21190.
  12. Grudinin A. B. & Gray S. Passive harmonic mode locking in soliton fiber lasers. JOSA B. 1997;14(1): 144–154.
  13. Liu X. & Pang M. Revealing the Buildup Dynamics of Harmonic Mode-Locking States in Ultrafast Lasers. Laser & Photonics Reviews. 2019;13(9), 1800333.
  14. Korobko D. A., Okhotnikov O. G., Zolotovskii I. O. Long-range soliton interactions through gain-absorption depletion and recovery. Optics letters. 2015; 40(12): 2862–2865.
  15. Semaan G., Komarov A., Salhi M. & Sanchez F. Study of a harmonic mode lock stability under external continuous-wave injection. Optics Communications. 2017; 387:65–69.
  16. Dianov E. M., Luchnikov A. V., Pilipetskii A. N., & Starodumov A. N. (1990). Electrostriction mechanism of soliton interaction in optical fibers. Optics letters. 1990; 15(6), 314–316.
  17. Gray S., Grudinin A. B., Loh W. H. & Payne D. N. Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps. Optics letters. 1995; 20(2):189–191.
  18. Noronen T., Okhotnikov O., & Gumenyuk R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700–1800 nm wavelength band. Optics express. 2016; 24(13): 14703–14708.
  19. Sousa J. M. & Okhotnikov O. G. Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers. Optics communications. 2000;183(1–4): 227–241.
  20. Gumenyuk R., Korobko D. A., Zolotovsky I. O. & Okhotnikov O. G. Role of cavity dispersion on soliton grouping in a fiber lasers. Optics express.2014;22(2): 1896–1905.
  21. Gumenyuk R. V., Korobko D. A. & Zolotovskii I. O. Stabilization of passive harmonic mode locking in a fiber ring laser. Optics Letters. 2020; 45(1):184–187.
  22. Kotov L., Likhachev M., Bubnov M., Medvedkov O., Lipatov D., Guryanov A. & Février S. Millijoule pulse energy 100-nanosecond Er-doped fiber laser. Optics Letters. 2015; 40(7): 1189–1192.
  23. Korobko D. A., Stoliarov D., Itrin P., Odnoblyudov M. A., Petrov A. A. & Gumenyuk R. Harmonic mode-locking fiber ring laser with a pulse repetition rate up to 12 GHz. Optics and Laser Technology.2021;133: 106526.
  24. Korobko D. A., Stoliarov D., Itrin P., Ribenek V. A., Odnoblyudov M. A., Petrov A. & Gumenyuk R. Stabilization of a Harmonic Mode-Locking by Shifting the Carrier Frequency. Journal of Lightwave Technology. 2021;39(9): 2980–2987.
  25. Korobko D. A., Stoliarov D. A., Itrin P., Ribenek V. A., Fotiadi A. A. & Gumenyuk R. Stable harmonic mode locking in soliton fiber laser with frequency shift: theory and experiment. In Nonlinear Optics and Applications XII. 2021.
  26. Wabnitz S., Kodama Y. & Aceves A. B. Control of optical soliton interactions. Optical Fiber Technology. 1995;1(3):187–217.
  27. Tang D. Y., Zhao L. M., Zhao B., & Liu A. Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A. 2005; 72(4): 043816.
  28. Kutz J. N., Collings B. C., Bergman K., Knox H. Stabilized pulse spacing in soliton lasers due to gain depletion and recovery. IEEE Journal of Quantum Electronics. 1998; 34 (9): 1749–1757.
  29. Stolyarov D. A., Korobko D. A., Zolotovskii I. O., & Sysolyatin A. A. A Laser Complex with a Central Wavelength of 1.55 μm for Generation of Pulses with Energy Exceeding 1 μJ and a Supercontinuum Spanning a Nearly Two-Octave Range. Optics and Spectroscopy. 2019;126(6): 638–644.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Layout of a fiber laser with harmonic mode locking: PC – polarization controller, FS – acousto-optic modulator in the frequency shift mode, TBPF – tunable filter, OC – output coupler

Download (66KB)
3. Fig. 2. Optical spectra of generated pulse sequences depending on the transmission region of the tunable filter. The spectra are shown for the given maximum repetition rates obtained in each transmission band: 1 – 9 GHz; 2 – 11 GHz; 3 – 4.5 GHz, 4 – 6.5 GHz; 5 – 1.6 GHz; 6 – 4.7 GHz; 7 – 0.7 GHz; 8 – 13 GHz; 9 – 12 GHz

Download (104KB)
4. Fig. 3. Output power and pulse repetition rate depending on the pumping power at the central transmission wavelength of the filter λ0 = 1 533.7 nm

Download (98KB)
5. Fig. 4. Optical spectra of pulse sequences at different repetition rates for the central transmission wavelengths of the filter λ0 = 1532.7 nm and λ0 = 1533.7 nm

Download (126KB)
6. Fig. 5. Specifications of the radio frequency spectrum of pulse sequences obtained at the central transmission wavelength of the filter λ0 = 1532.7 nm: a) RF spectrum of the sequence with a repetition rate of 4.49 GHz (resolution – 1 kHz); b) RF spectrum with 30 Hz resolution

Download (115KB)
7. Fig. 6. Changes in the signal-to-noise ratio (red triangles) and supermode noise suppression the level (black rhombuses) at various repetition rates

Download (82KB)
8. Fig. 7. Oscillograms (left) and RF spectra (right) of pulse sequences with the repetition rates of 8.95 GHz, 11.97 GHz and 13.01 GHz at the central filter transmission wavelength λ0 = 1529 nm, 1546.5 nm and 1545.5 nm (from bottom to top), respectively

Download (174KB)

Copyright (c) 2023 Itrin P.A., Sementsov D.I., Petrov A.B., Kozlyakov M.S., Ribenek V.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies