A Hardware and Software Package for the Study of Small-Scale Variations of Greenhouse Gases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To study the nature of greenhouse gas variations, a hardware and software complex has been created, consisting of the 52.5-meter laser strainmeter, the 17.5-meter laser strainmeter, the laser nanobarograph and the mobile laboratory Research Vessel “Professor Gagarinsky”, consisting of an atmochemical measuring complex (Picarro gas analyzer), the complex of meteorological instruments on the upper deck of the bridge, the vessel’s gas analysis laboratory and the flow-through system. When processing experimental data on variations of deformations of the upper layer of the Earth’s crust and variations of atmospheric pressure at Shultz Cape, and in the analysis of variations of methane, carbon dioxide and water vapor in the near-water atmosphere on the shelf of the Sea of Japan at a distance of about 2 km from Shultz Cape, general patterns were established in the behavior of the studied parameters of the upper layer of the Earth’s crust and the near-water layer of the atmosphere in the infragravity range. The general powerful oscillations with periods from 7 min 59.1 s to 7 min 45.5 s, 28 min 28.8 s, from 30 min 07.6 s to 31 min 59.1 are identified, the primary source of which can be associated with both atmospheric processes and the main (radial) tone of the Earth’s own vibrations 0S0.

Full Text

Restricted Access

About the authors

G. I. Dolgikh

Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: dolgikh@poi.dvo.ru
ORCID iD: 0000-0002-2806-3834

Academician RAS, Doctor of Phys&Math Sciences

Russian Federation, Vladivostok

M. A. Bovsun

Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dolgikh@poi.dvo.ru
ORCID iD: 0000-0003-1916-3566
Russian Federation, Vladivostok

S. G. Dolgikh

Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dolgikh@poi.dvo.ru
ORCID iD: 0000-0001-9828-5929

Doctor of Technical Sciences

Russian Federation, Vladivostok

V. A. Chupin

Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dolgikh@poi.dvo.ru
ORCID iD: 0000-0001-5103-8138

Candidate of Phys&Math Sciences

Russian Federation, Vladivostok

A. V. Yatsuk

Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dolgikh@poi.dvo.ru
ORCID iD: 0000-0003-3975-5438

Candidate of Geological-Mineralogical Sciences

Russian Federation, Vladivostok

References

  1. Saunois, M., A. R. Stavert, B. Poulter et al. 2019: The Global Methane Budget 2000–2017. Earth System Science Data. https://doi.org/10.5194/essd-2019–128.
  2. Cavity Ring-Down Spectroscopy (CRDS). Picarro. 2019. URL: https://www.picarro.com/company/technology/crds.
  3. CO2, CH4 and H2O Dual Mode Greenhouse Gas Analyzer. – Santa Clara: Picarro, 2018. – P 2. URL: https://www.picarro.com/support/library/documents/g2311_f_analyzer_datasheet_data_ sheet.
  4. Dolgikh G. I., Dolgikh S. G., Kovalev S. N., Koren I. A., Novikova O. V., Ovcharenko V. V., Okuntseva O. P., Shvets V. A., Chupin V. A., Yakovenko S. V. A laser nanobarograph and its application to the study of pressure-strain coupling. Izvestiya. Physics of the Solid Earth. 2004; 40(8): 683–691. Долгих Г. И., Долгих С. Г., Ковалев С. Н., Корень И. А., Новикова О. В., Овчаренко В. В., Окунцева О. П., Швец В. А., Чупин В. А., Яковенко С. В. Лазерный нанобарограф и его применение при его изучении баро-деформационного взаимодействия. Физика Земли. 2004;8:82–90.
  5. Dolgikh G. I., Kovalev S. N., Koren’ I.A., and Ovcharenko V. V. A Two-Coordinate Laser Strainmeter. Izvestiya. Physics of the Solid Earth. 1998: 34(11): 946–950. Долгих Г. И., Ковалев С. Н., Корень И. А., Овчаренко В. В. Двухкоординатный лазерный деформограф. Физика Земли. 1998;11:76–81.
  6. Shved G. M., Ermolenko S. I., Karpova N. V., Wendt S., Jacobi C. Detecting global atmospheric oscillations by seismic instruments. Izvestiya, Physics of the Solid Earth. 2013;49(2): 278–288. Швед Г. М., Ермоленко С. И., Карпова Н. В., Вендт З., Якоби К. Регистрация глобальных осцилляций Атмосферы сейсмическими приборами. Физика Земли. 2013;2:131. doi: 10.7868/S0002333713010134
  7. Dolgikh G., Dolgikh S., Ovcharenko V. Initiation of Infrasonic Geosphere Waves Caused by Explosive Eruption of Hunga Tonga-Hunga Ha’apai Volcano. Journal of Marine Science and Engineering. 2022; 10(8):1061. doi: 10.3390/jmse10081061.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map showing the anchorage of the Research Vessel “Professor Gagarinsky”

Download (692KB)
3. Fig. 2. The scheme of research. a) – mobile ship measuring system based on the Research Vessel “Professor Gagarinsky”: 1 – atmochemical measuring complex (Picarro gas analyzer in the vessel’s laboratory and the position of the air intake device in the front of the vessel); 2 – a set of meteorological instruments on the upper deck of the bridge; 3 – the vessel’s gas analysis laboratory and flow-through system; 4 – deck outboard work. b) – the location of the Research Vessel spotting at the multi-day climatic experimental station in the Posyet Bay

Download (2MB)
4. Fig. 3. Layout of the laser strainmeters. 1 – the laser strainmeter with measuring arm length 52.5 m, 2 – the laser strainmeter with measuring arm length 17.5 m, 3 – laboratory building

Download (757KB)
5. Fig. 4. Synchronous sections of the records: a) methane concentrations; b) carbon dioxide concentrations; c) water vapor concentrations; d) atmospheric pressure variations on the Schultz Cape; e) deformation of the upper part of the Earth’s crust on the Schultz Cape

Download (342KB)
6. Fig. 5. Spectra obtained by processing synchronous sections of recordings: a) 52.5-meter laser strainmeter; b) laser nanobarograph; c) 17.5-meter laser strainmeter

Download (407KB)
7. Fig. 6. Spectra obtained by processing the recording of variations in concentrations of: a) methane; b) carbon dioxide; c) water vapor

Download (417KB)
8. Fig. 7. Spectra obtained by processing the recording of variations in concentrations of: a) methane; b) carbon dioxide; c) water vapor

Download (419KB)
9. Fig.8. Spectra obtained by processing the recording of variations in concentrations of: a) methane; b) carbon dioxide; c) water vapor

Download (413KB)

Copyright (c) 2023 Dolgikh G.I., Bovsun M.A., Dolgikh S.G., Chupin V.A., Yatsuk A.V.