Processing of optical crystals and leds in glow discharge plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Glow discharge plasma treatment is increasingly being used to clean the surfaces of materials from contamination, reduce surface roughness, increase surface energy and surface modification. The article presents the results of plasma processing of high-frequency and low-frequency gas discharge in the MPC RF-12 plasma processing unit of optical crystal disks and cassettes of solid-state LEDs. The influence of parameters and modes of plasma treatment, namely power, time and type of working gas on the quality of treatment is estimated. It is shown that plasma treatment is a powerful tool for influencing the surface properties of optical crystals, is effective for removing metal oxide layers and is safe for adhesive joints of crystals with a base.

Full Text

Restricted Access

About the authors

Maksim A. Bogachev

GNtech LLC; Bauman Moscow State Technical University

Email: journal@electronics.ru
ORCID iD: 0000-0001-6580-0103

1st year master’s student of the Department of Electronic Technologies in Mechanical Engineering; Engineer 

Russian Federation, Moscow; Moscow

Denis D. Vasiliev

GNtech LLC; Bauman Moscow State Technical University

Email: journal@electronics.ru
ORCID iD: 0000-0003-2147-4216

Cand. of Scien. (Engineering), Associate Professor of the Department of Electronic Technologies in Mechanical Engineering; Lead Engineer

Russian Federation, Moscow; Moscow

Konstantin M. Moiseev

GNtech LLC; Bauman Moscow State Technical University

Email: journal@electronics.ru

Cand. of Scien. (Engineering), Associate Professor of the Department of Electronic Technologies in Mechanical Engineering; technical director

Russian Federation, Moscow; Moscow

Maria V. Nazarenko

GNtech LLC; Russian Technological University MIREA (RTU-MIREA)

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-8753-7737

PhD student, Department of Nanoelectronics; Process Engineer 

Russian Federation, Moscow; Moscow

References

  1. Kovsh I. B. Photonics in Russia: State & Challenges. Part I. Photonics Russia. 2019;13(2):130–141. doi: 10.22184/1993-7296.FRos.2019.13.2.130.141.
  2. Segev M., Bandres M. A. Topological photonics: Where do we go from here? Nanophotonics. 2021;10(1):425–434. doi: 10.1515/nanoph-2020-0441.
  3. Wu Y., Li C., Hu X., Ao Y., Zhao Y., Gong Q. Applications of topological photonics in integrated photonic devices. Advanced Optical Materials. 2017;5(18): 1700357. doi: 10.1002/adom.201700357.
  4. Pelucchi E., Fagas G., Aharonovich I., Englund, D, Figueroa E., Gong Q. et al. The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics. 2022;4(3):194–208. doi: 10.1038/s42254-021-00398-z.
  5. Singh M., Weidner K. Types and performance of high performing multi-mode polymer waveguides for optical interconnects/ In book: Optical Interconnects for Data Centers. Woodhead Publishing Series in Electronic and Optical Materials. 2017;157–170. doi: 10.1016/B978-0-08-100512-5.00006-1.
  6. Kachura S. M., Postnov V. I. Perspektivnye optovolokonnye datchiki i ih primenenie (obzor). Trudy VIAM. 2019; 5 (77). (In Russ.). Качура С. М., Постнов В. И. Перспективные оптоволоконные датчики и их применение (обзор). Труды ВИАМ. 2019; 5 (77).
  7. Miftahov I. S., Voznesenskij E. F., Abdullin I. Sh., Fadeev A. O., Gataullin L. Primenenie plazmy VCh-razryada ponizhennogo davleniya v processah polirovki opticheskih materialov polikristallicheskogo stroeniya. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015; 11. (In Russ.). Мифтахов И. С., Вознесенский Э. Ф., Абдуллин И. Ш., Фадеев А. О., Гатауллин Л. Применение плазмы ВЧ-разряда пониженного давления в процессах полировки оптических материалов поликристаллического строения. Вестник Казанского технологического университета. 2015;11.
  8. Gribenyukov A. I., Voevodin V. I. Influence of the preparation conditions on optical properties of single crystals ZnGeP2 in THz range // J. Phys. Conf. Ser. – 2018. – № 1115. – P. 052030.
  9. Gerhard C., Stappenbeck M. Impact of the Polishing Suspension Concentration on Laser Damage of Classically Manufactured and Plasma Post-Processed Zinc Crown Glass Surfaces. Appl. Sci. 2018, 8, 1556. https://doi.org/10.3390/app8091556.
  10. Vasiliev A. Osobennosti tekhnologii proizvodstva svetodiodnyh svetil’nikov. Sovremennaya svetotekhnika. 2010;5. (In Russ). Васильев А. Особенности технологии производства светодиодных светильников. Современная светотехника. 2010;5.
  11. Belyaev V. Tverdotel’nye i organicheskie mikrosvetodiody – tekhnologiya, rynok, perspektivy. Elektronika: Nauka, tekhnologiya, biznes. 2018; 8. doi: 10.22184/1992-4178.2018.179.8.102.112. (In Russ). Беляев В. Твердотельные и органические микросветодиоды – технология, рынок, перспективы.Электроника: Наука, технология, бизнес. 2018; 8. doi: 10.22184/1992-4178.2018.179.8.102.112.
  12. Moiseev K. M., Vasiliev D. D., Mikhailova I. V., Vorobev I. A. Development of Plasma Processing Systems for Optics and Electronics Products. Photonics Russia. 2022;16(2):136–141. doi: 10.22184/1993-7296.FRos.2022.16.2.136.140.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Line of MPC plasma treatment units manufactured by GN tech

Download (3MB)
3. Fig. 2. Frames of metal LEDs: a) before plasma treatment; b) after plasma treatment

Download (121KB)

Copyright (c) 2023 Bogachev M.A., Vasiliev D.D., Moiseev K.M., Nazarenko M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies