Germanium as a photonics substance: from lenses to dislocation-free wafers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers the process of development of germanium single crystal growth technology by the Czochralsky method, which allowed the application of germanium properties in IR optics and in gamma radiation detection. It is expected that germanium may return to optoelectronics again: recent developments in the cultivation of dislocation-free crystals have shown that germanium is a promising material for next-generation nanoscale electronic devices and for the integration of optical functions on logic circuits.

Full Text

Restricted Access

About the authors

Arkady V. Naumov

JSC “Design Bureau “Astrohn”

Email: journal@electronics.ru
ORCID iD: 0000-0001-6081-8304

Head of the Research Area

Russian Federation, Lytkarino

Vadim V. Startsev

JSC “Design Bureau “Astrohn”

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-2800-544X

Candidate of Technical Sciences, Chief Designer

Russian Federation, Lytkarino

References

  1. Anoshin K. E., Gasanov A. A., Naumov A. V. Osobennosti sovremennogo rynka germaniya. Cvetnaya metallurgiya. 2016; 2: 67–76. (In Russ). Аношин К. Е., Гасанов А. А., Наумов А. В. Особенности современного рынка германия. Цветная металлургия. 2016; 2: 67–76.
  2. Bendow B. Optical properties of infrared transmitting materials. J. Electron. Mater. 1974; 3(1): 101–135.
  3. Smirnov Yu.M., Kaplunov I. A., Kolesnikov A. I., Rodionova G. E. Vyrashchivanie vysokochistyh krupnogabaritnyh monokristallov. Vysokochistye veshchestva. 1990; 6: 213–216. (In Russ). Смирнов Ю. М., Каплунов И. А., Колесников А. И., Родионова Г. Е. Выращивание высокочистых крупногабаритных монокристаллов. Высокочистые вещества. 1990; 6: 213–216.
  4. Kaplunov I. A., Kolesnikov A. I. Vliyanie harakteristik germaniya na rasseyanie IK-izlucheniya. Poverhnost’. 2002; 2: 14–19. (In Russ). Каплунов И. А., Колесников А. И. Влияние характеристик германия на рассеяние ИК-излучения. Поверхность. 2002; 2: 14–19.
  5. Kaplunov I. A., Rogalin V. E. Optical properties and applications of germanium in photonics. Photonics Russia. 2019; 13(1): 88–106. doi: 10.22184/FRos.2019.13.1.88.106.
  6. Smirnov Yu.M., Kaplunov I. A. Monokristally germaniya dlya infrakrasnoj tekhniki. Materialovedenie. 2004; 5: 48–52. (In Russ). Смирнов Ю. М., Каплунов И. А. Монокристаллы германия для инфракрасной техники. Материаловедение. 2004; 5: 48–52.
  7. Size S. M., Lee M. K. Semiconductor Devices – Physics and Technology. – John Wiley & Sons, Inc., США, 2012, p.578.
  8. Curtolo D. C., Friedrich S. and Friedrich B. High Purity Germanium, a Review on Principle Theories and Technical Production Methodologies. Journal of Crystallization Process and Technology. 2017; 7:65–84. doi: 10.4236/jcpt.2017.74005.
  9. Depuydt B., Theuwis A., Romandic I. Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers. Materials Science in Semiconductor Processing. 2006; 9: 437–443. doi: 10.1016/j.mssp.2006.08.002.
  10. Fal’kevich E.S., Pul’ner E.O., Chervonyj I. F. Shvarcman L. Ya. Tekhnologiya poluprovodnikovogo kremniya. – M: Metallurgiya 1992 g. 408 s. (In Russ). Фалькевич Э. С., Пульнер Э. О., Червоный И. Ф. Шварцман Л. Я. Технология полупроводникового кремния. – М: Металлургия 1992 г. 408 с.
  11. Uecker R. The historical development of the Czochralski method. Journal of Crystal Growth.2014; 401: 7–25.
  12. Naumov A. V., Orekhov D. L., Kul’chickij N. A. Progress v tekhnologiyah poluprovodnikovogo kremniya (obzor). Uspekhi prikladnoj fiziki. 2022; 10(1):.32–49. doi: 10.51368/2307-4469-2022-10-1-32-50. (In Russ). Наумов А. В., Орехов Д. Л., Кульчицкий Н. А. Прогресс в технологиях полупроводникового кремния (обзор). Успехи прикладной физики. 2022; 10(1):.32–49. doi: 10.51368/2307-4469-2022-10-1-32-50

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Technological chain of germanium production and application areas

Download (223KB)
3. Fig. 2. Dynamics of primary germanium production (according to USGS data) in tons and prices (metal-pages) in $/kg

Download (134KB)
4. Fig. 3. Structure of optical fiber

Download (133KB)
5. Fig. 4. Large-diameter germanium lenses in a long-focus IR lens (a) and an anti-epidemic thermal imager with germanium optics (b)

Download (240KB)
6. Fig. 5. Germanium lenses for IR technology

Download (110KB)
7. Fig. 6. The first germanium single crystals obtained in 1948

Download (52KB)
8. Fig. 7. Schematic diagram of the Czochralsky method (a) and the crystal growth control system (b)

Download (174KB)
9. Fig. 8. The growth of the diameters of germanium ingots by the Czoсhralsky method

Download (89KB)
10. Fig. 9. Example of a solar cell with five p-n junctions based on A3B5 on a Ge wafer

Download (265KB)
11. Fig. 10. Example of a A3B5-based VSCEL diode on a Ge wafer

Download (699KB)
12. Fig. 11. History and forecast of germanium production in the world

Download (81KB)

Copyright (c) 2023 Naumov A.V., Startsev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies