Energy Yield of Multijunction Solar Cells With Allowance for the Latitude Variability of the Spectral Composition Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An energy yield assessment of the multijunction solar cells is proposed with allowance for the total spectral composition of direct solar radiation during the annual period. It is shown that the energy yield ratio of a four-junction solar cell near the equator is 45% in the case of an atmosphere with a low aerosol composition and 44% in the case of an atmosphere with an aerosol filling typical for the urban areas. At a latitude of +30°, the annual energy yield of this solar cell can be 1001 kWh/m2. To calculate the energy yield of installations and photovoltaic modules with such solar cells, this value adjustment is required due to the energy losses caused by the power plant design.

Full Text

Restricted Access

About the authors

Evgenia A. Ionova

E. A. Ionova Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0003-2886-6706

research fellow at the Ioffe Physical-Technical Institute of the Russian Academy of Sciences, concentrator photovoltaics

Russian Federation, Saint-Petersburg

References

  1. Green M. A., Dunlop E. D., Siefer G., et al. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl. 2023; 31: 3–16. doi: 10.1002/pip.3646.
  2. Vossier A., Riverola A., Chemisana D., Dollet A., Gueymard C. A. Is conversion efficiency still relevant to qualify advanced multi-junction solar cells? Prog. Photovolt. Res. Appl. 2017; 25: 242–254. doi: 10.1002/pip.2853.
  3. Green M. A., Hishikawa Y., Dunlop E. D., Levi D. H., Hohl-Ebinger J., Ho-Baillie A. W. Solar cell efficiency tables (version 51). Prog Photovolt Res Appl. 2018;26:3–12. doi: 10.1002/pip.2978.
  4. PV Solar Cells [Accessed on 08.12. 2021] https://www.azurspace.com/index.php/en/products/products-cpv/cpv-solar-cells.
  5. Schroth P., Löckenhoff R., Fuhrmann D., et al. AZUR’s new 5C46 CPV cell: Final design for optimized outdoor performance. AIP Conference Proceedings. 2022; 2550:020008. https://doi.org/10.1063/5.0100397.
  6. Geisz J. F., France R. M., Schulte K. L., Steiner M. A., Norman A. G., Guthrey H. L., Young M. R., Song T., Moriarty T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy. 2020; 5:326–335. doi: 10.1038/s41560-020-0598-5.
  7. N. Jain, K. L. Schulte, J. F. Geisz, D. J. Friedman, R. M. France, E. E. Perl, A. G. Norman, H. L. Guthrey, M. A. Steiner High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells. Appl. Phys. Lett. 2018; 112: 053905. doi: 10.1063/1.5008517.
  8. Kasten F., Young A. T. Revised optical air mass tables and approximation formula. Applied Opt.1989; 28: 4735–4738.
  9. Gueymard C. A. The SMARTS spectral irradiance model after 25 years: New developments and validation of reference spectra. Solar Energy. 2019;187:233–253. https://doi.org/10.1016/j.solener.2019.05.048Get rights and content.
  10. Rusina E. N., Radionov V. F., Sibir E. E. Rezul’taty monitoringa aerozol’noj sostavlyayushchej atmosfery v srednih i vysokih shirotah i nad akvatoriej Mirovogo okeana. Problemy Arktiki i Antarktiki. 2016; 2(108): 5–15. (In Russ.). Русина Е. Н., Радионов В. Ф., Сибир Е. Е. Результаты мониторинга аэрозольной составляющей атмосферы в средних и высоких широтах и над акваторией Мирового океана. Проблемы Арктики и Антарктики. 2016; 2(108): 5–15.)
  11. Gueymard C. A. Simple Model of the Atmospheric Radiative Transfer of Sunshine, version 2 (SMARTS2): Algorithms description and performance assessment / Florida Solar Energy Center: Report FSEC-PF-270–95. 1995.
  12. Solar Geometry Calculator. [Accessed on 13.02.2023]. URL: https://www.esrl.noaa.gov/gmd/grad/neubrew/SolarCalc.jsp.
  13. Meeus J. Astronomical algorithms. Willmann-Bell, Incorporated. 1991.
  14. Solargis. [Accessed on 10.03.2023]. URL: https://solargis.com/maps-and-gis-data/download/world.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spectral distribution of Nph photon flux with AM from 1 to 6 (shaded) through the atmospheres with low (left) and high (right) aerosol turbidity

Download (147KB)
3. Fig. 2. Short circuit currents (Isc) of solar cells with 3 and 5 p-n junctions in the case of irradiation with the AM parameter from 1 to 6 in the atmospheres with low and high aerosol filling (shaded).

Download (99KB)
4. Fig. 3. Number of minutes per year N with AM values in an interval with the width of 0.01 at the latitudes 10°, 40°, 60°

Download (96KB)
5. Fig. 4. Energy yield ratio Kw of the solar cells with 1, 2, ..6 p-n junctions depending on the geographic latitude (solid line) and solar cell efficiency (dashed line)

Download (133KB)
6. Fig. 5. Maximum permissible annual energy yield W, kWh / m2 of the solar cells with 1, 2, ..6 p-n junctions depending on the geographic latitude in an atmosphere determined in IEC 60904-3

Download (103KB)
7. Fig. 6. Decrease in the energy yield ratio Kw of SCs with 1, 3, 4 p-n junctions (top), with 2, 5, 6 p-n junctions (bottom) during the transition from the low to high atmosphere aerosol filling (shaded). Note: in practice, the Kw value is not decreased at the high latitudes due to the transparent atmosphere

Download (135KB)

Copyright (c) 2023 Ionova E.A.