Study of the Systems for Laser Diode Radiation Output Into a Single-Mode Optical Fiber

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An optical radiation output system of a laser diode based on a discrete ball lens and a fiber ball lens is proposed. The sensitivity of the following optical radiation output systems of a laser diode to the deviation of elements from the optimal position is determined: laser diode – cleaved optical fiber, laser diode – tapered optical fiber, laser diode – discrete molded lens – cleaved optical fiber, laser diode – discrete ball lens – fiber ball lens. The recommendations are given for the use of these systems in packaging the microwave-photonic modules including the photonic integrated circuits produced with an InP technology.

Full Text

Restricted Access

About the authors

Anna A. Sheinberger

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0001-9816-3294

Junior Researcher, Laboratory of Integrated Optics and Radiophotonics (LIOR)

Russian Federation, Tomsk

Mikhail V. Stepanenko

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0002-6608-5743

Researcher, Laboratory of Integrated Optics and Radiophotonics (LIOR)

Russian Federation, Tomsk

Yury S. Zhidik

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0001-7803-2086

Cand. of Sciences(Eng.), Leading Researcher, LIOR, Associate Professor of the department, Physical electronics

Russian Federation, Tomsk

Svetlana P. Ivanichko

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0009-0000-9818-9646

Junior Researcher, LIOR

Russian Federation, Tomsk

Anastasiia V. Maykova

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0009-0008-7074-4175

Junior Researcher, LIOR

Russian Federation, Tomsk

References

  1. Jing Z., Ramana P. V., Hon-Shing J.L., Qingxin Z., Chandrappan J., Wei T. C. et al. Design and characterization of taper coupler for effective laser and single-mode fiber coupling with large tolerance. IEEE Photonics Technology Letters 2008; 20:1375–7. https://doi.org/10.1109/LPT.2008.926819.
  2. Cheung YM, Yiu CH. Simulation of the alignment sensitivity on the coupling efficiency of a ball-lens capped TO-can laser diode source into a single-mode fiber. Proceedings of the 4th International Symposium on Electronic Materials and Packaging. 2002., 2002, p. 197–203. https://doi.org/10.1109/EMAP.2002.1188837.
  3. Prasciolu M., Cojoc D., Cabrini S., Businaro L., Candeloro P., Tormen M. et al. Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography. Microelectron Eng. 2003;67–68:169–74. https://doi.org/10.1016/S0167-9317(03)00068-6.
  4. Fu Y, Bryan NKA. Integration of micro-optical elements with top-end of fibers via focused ion beam direct fabrication. In: Sheng Y, Hsu D, Yu C, Lee B, editors. Holography, Diffractive Optics and Applications II. SPIE. 2005;5636;136–142. https://doi.org/10.1117/12.570124.
  5. Fu Y, Bryan NKA, Shing ON. Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling. IEEE Photonics Technology Letters. 2000;12:1213–5. https://doi.org/10.1109/68.874239.
  6. Karnaushkin P., Ponomarev R. Tapered optical fiber for introducing radiation into a waveguide of small diameter. Perm University Herald. Physics. 2017;0. https://doi.org/10.17072/1994-3598-2017-1-54-64 (In Russ.). Карнаушкин П. В, Пономарев Р. С. Волоконный световод с конусной линзой для ввода излучения в волновод малого диаметра. Вестник Пермского Университета. Физика. 2017;1: 54–64. https://doi.org/10.17072/1994-3598-2017-1–54-64.
  7. Mao J, Sheng H, Zhou C. A fiber coupling system based on the GRIN lens for use in all-fiber lidars. Journal of Russian Laser Research. 2012;33:186–95. https://doi.org/10.1007/s10946-012-9272-0.
  8. Jiang W, Sun Y, Chen RT, Guo B, Horwitz J, Morey W. Ball-lens based optical add-drop multiplexers: design and implementation. IEEE Photonics Technology Letters. 2002;14:825–7. https://doi.org/10.1109/LPT.2002.1003106.
  9. Laser_Diode_Microsystems n. d.
  10. Shurygin Yu. A., Ishutkin S. V., Shiryaev B. V., Zhidik Yu. S. Manufacturing of electro-optical modulators based on InP for fiber optic systems and conducting automated visual inspection of their surface for defects. Proceedings of TUSUR University. 2022;25:21–7. (In Russ.). Шурыгин Ю. А, Ишуткин С. В, Ширяев Б. В, Жидик Ю. С. Изготовление электрооптических модуляторов на основе InP для ВОЛС и проведение автоматизированного визуального контроля их поверхности на предмет наличия дефектов. Доклады ТУСУР. 2022;25:21–7.
  11. Guzowski B, Lisik Z, Tosik G. Realization of optical fibers terminated with ball lenses. Bulletin of the Polish Academy of Sciences Technical Sciences 2016;64. https://doi.org/10.1515/bpasts-2016–0031.
  12. Govind P. Agrawal. Fiber-Optic Communication Systems. 2021.
  13. Méndez AMTF. Specialty Optical Fibers Handbook. Academic Press; 1st edition; 2007.
  14. Al-Azzawi A. Fiber Optics: Principles and Practices. CRC Press; 2006.
  15. Malki A, Bachelot R, Lauwe V. Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source. Journal of Optics A: Pure and Applied Optics. 2001;3:291. https://doi.org/10.1088/1464-4258/3/4/310.
  16. Zhang F., Zheng Y., Lu S., Luo D., Duan J. Coupling efficiency between ball lens capped laser diode chip and single mode fiber. Optik – International Journal for Light and Electron Optics 2017;157. https://doi.org/10.1016/j.ijleo.2017.11.076.
  17. Fadhali M., Ali J., Zainal Y., Munajat J., Rahman R. Analysis of efficiency and misalignment tolerances in laser diode pigtailing using single ball lens. J. Appl. Sci. Res. 2007;3:1778–87.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Implementation diagram of the systems under consideration

Download (286KB)
3. Fig.2. Test setup layout

Download (279KB)
4. Fig.3. Dependence of changes in the optical power obtained by the cleaved optical fiber on its displacement value along the y axis: 1 – for the optimal position along the x axis; 2 – for a position along the x axis 10 µm further than the optimal position; 3 – for a position along the x axis 20 µm further than the optimal position

Download (152KB)
5. Fig.4. Dependence of changes in the optical power obtained by the cleaved optical fiber on its displacement value along the z axis: 1 – for the optimal position along the x axis; 2 – for a position along the x axis 10 µm further than the optimal position; 3 – for a position along the x axis 20 µm further than the optimal position

Download (143KB)
6. Fig.5. Dependence of changes in the optical power obtained by the optical fiber on its displacement value along the y axis: 1 – laser diode – tapered optical fiber; 2 – laser diode – discrete molded lens – cleaved optical fiber; 3 – laser diode – discrete ball lens – fiber ball lens; 4 – laser diode – cleaved optical fiber

Download (178KB)
7. Fig.6. Dependence of changes in the optical power obtained by the optical fiber on its displacement value along the z axis: 1 – laser diode – tapered optical fiber; 2 – laser diode – discrete molded lens – cleaved optical fiber; 3 – laser diode – discrete ball lens – fiber ball lens; 4 – laser diode – cleaved optical fiber

Download (146KB)

Copyright (c) 2023 Sheinberger A.A., Stepanenko M.V., Zhidik Y.S., Ivanichko S.P., Maykova A.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies