Axially Symmetric Hermite-Gaussian Beams and the BB84 Protocol for the Space-Earth Quantum Cryptography Channel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper provides a description of Hermite-Gaussian beams with an axially symmetric polarization structure generated by a vector superposition of Hermite-Gaussian modes with the indices 10 and 01. It is shown that the axial polarization symmetry makes such beams insensitive to the rotations relative to the optical axis that makes such a modification of the well-known BB84 protocol preferred for the quantum space cryptography systems. The possible creation and detection of such beams within the framework of a polarization protocol transmission using the devices with a radial polarizer is discussed.

Full Text

Restricted Access

About the authors

A. L. Sokolov

JSC “Research-and-production corporation “Precision system and Instruments” (RPC PSI)

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0001-6164-7615

Doctor of Technical Sciences, Prof., Head of Department

Russian Federation, Moscow

V. M. Petrov

Saint-Petersburg State University

Email: journal@electronics.ru
ORCID iD: 0000-0002-8523-0336

Doctor of Physical and Mathematical Sciences (radiophysics), Doctor of Physical and Mathematical Sciences (optics), professor, Department of General Physics No. 1

Russian Federation, Saint-Petersburg

V. Yu. Venediktov

Measurement and Navigation Systems, St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru

Dr. of Sciences (Phys.&Math.), Professor, Chief Researcher, Department of Laser Measurement and Navigation Systems

Russian Federation, St. Petersburg

D. D. Reshetnikov

Saint-Petersburg State University

Email: journal@electronics.ru
ORCID iD: 0009-0001-5587-3306

Ph. D. Student, Department of General Physics No.1

Russian Federation, Saint-Petersburg

References

  1. Bykovskij A. YU., Kompanec I. N. Kvantovaya kriptografiya i kombinirovannye skhemy kommunikacionnyh setej na ee osnove. Kvantovaya elektronika. 2018; 48 (9): 777. doi: 10.1070/QEL16732. (In Russ.). Быковский А. Ю., Компанец И. Н. Квантовая криптография и комбинированные схемы коммуникационных сетей на ее основе. Квантовая электроника. 2018;48 (9): 777. doi: 10.1070/QEL16732.
  2. Mirhosseini M., Magana-Loaiza O. S., O’Sullivan M. N. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 2015; 17: 033033. doi: 10.1088/1367–2630/17/3/033033.
  3. Doster T., Watnik A. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency. Appl. Opt. 2016; 55 (36): 10239. http://dx.doi.org/10.1364/AO.55.010239.
  4. Lavery M. P. J., Peuntinger C., Gunthner K. et al. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv. 2017; 3 (10): e1700552. doi: 10.1126/sciadv.1700552.
  5. Z. Qu, Djordjevic I. B. High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing. Opt. Express. 2017; 25 (7): 7919. https://doi.org/10.1364/OE.25.007919
  6. Sit A., Fickler R., Alsairai F. et al. Quantum cryptography with structured photons through a vortex fiber. Opt. letters. 2018; 43 (17): 4108. https://doi.org/10.1364/OL.43.004108.
  7. Adam I. A., Yashin D. A., Kargina D. A. et al. Comparison of Gaussian and vortex beams in free-space QKD with phase encoding in turbulent atmosphere. Nanosystems: Phys. Chem. Math. 2022;13 (4): 392. doi: 10.17586/2220-8054-2022-13-4-392-403.
  8. Wang, Z. Malaney R., Green J. Satellite-to-Ground Multi-dimensional Quantum Teleportation via Orbital Angular Momentum. Conference paper: GLOBECOM 2019–2019 IEEE Global Communications Conference. 1 (IEEE 2019). http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014321.
  9. S.-K. Liao, C. W.-Q. Cai, W.-Y. Liu et al. Satellite-to-ground Quantum Key distribution. Nature. 2017; 549: 43. https://doi.org/10.1038/nature23655.
  10. Y.-A. Chen, Q. Zhang, C.-Y. Chen et all. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature. 2021;589:214. https://doi.org/10.1038/s41586-020-03093-8
  11. Sokolov A. L. Osesimmetrichnye puchki sveta i ih primenenie dlya kosmicheskoj tekhniki. Radiotekhnika. 2023; 87 (3): 64. https://doi.org/10.18127/j00338486-202304-08. (In Russ.). Соколов А. Л. Осесимметричные пучки света и их применение для космической техники. Радиотехника. 2023; 87 (3): 64. https://doi.org/10.18127/j00338486-202304-08.
  12. Akent’ev A. S., Sadovnikov M. A., Sokolov A. L., Simonov G. V. Polyarizacionnyj analiz sistemy navedeniya kvantovo-opticheskih sistem. Optika i spektroskopiya. 2017; 122 (6): 1044. https://doi.org/10.7868/S0030403417060022. (In Russ.). Акентьев А. С., Садовников М. А., Соколов А. Л., Симонов Г. В. Поляризационный анализ системы наведения квантово-оптических систем. Оптика и спектроскопия. 2017; 122 (6): 1044. https://doi.org/10.7868/S0030403417060022.
  13. Nesterov A. V., Niz’ev V. G., Sokolov A. L. Lazernoe izluchenie s osesimmetrichnym sostoyaniem polyarizacii. Vestnik MEI. 1999; 2, 76. (In Russ.). Нестеров А. В., Низьев В. Г., Соколов А. Л. Лазерное излучение с осесимметричным состоянием поляризации. Вестник МЭИ.1999; 2:76.
  14. Tovar A. Production and propagation of cylindrically polarized Laguerr-Gaussian laser beams. J. Opt. Soc. Am. A. 1998; 15: 2705. https://doi.org/10.1364/JOSAA.15.002705.
  15. Ishchenko E. F., Sokolov A. L. Polyarizacionnaya optika (uchebnoe posobie, izd. 3). M.: Izd. – vo. FIZMATLIT. 2019. ISBN 978-5-9221-1838-5 (In Russ.). Ищенко Е. Ф., Соколов А. Л. Поляризационная оптика (учебное пособие, изд. 3). М.: Изд. – во. ФИЗМАТЛИТ. 2019. ISBN 978-5-9221-1838-5.
  16. Dorn R., Quabis S., Leuchs G. Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B. 2005; 81 (5): 597. doi: 10.1007/s00340-005-1887-1.
  17. Niz’ev V. G., YAkunin V. P., Turkin N. G. Generaciya polyarizacionno-neodnorodnyh mod v moshchnom SO2-lazere. Kvantovaya elektronika. 2009; 39 (6): 505. https://doi.org/10.1070/QE2009v039n06ABEH013962. (In Russ.). Низьев В. Г., Якунин В. П., Туркин Н. Г. Генерация поляризационно-неоднородных мод в мощном СО2-лазере. Квантовая электроника. 2009; 39 (6): 505. https://doi.org/10.1070/QE2009v039n06ABEH013962.
  18. Difrakcionnaya nanofotonika. /Pod red. V. A. Sojfer. M.: Fizmatlit. 2011. ISBN 978-5-9221-1237-6. (In Russ.). Дифракционная нанофотоника. /Под ред. В. А. Сойфера. М.: Физматлит. 2011. ISBN 978-5-9221-1237-6.
  19. Sokolov A. L. Optical vortices with axisymmetric polarization structure. J. Opt. Soc. Am. A. 2013; 30 (7): 1350. http://dx.doi.org/10.1364/JOSAA.30.001350.
  20. Sadovnikov M. A., Sokolov A. L. Prostranstvennaya polyarizacionnaya struktura izlucheniya, formiruemaya ugolkovymi otrazhatelyami s nemetallizirovannymi granyami. Optika i spektroskopiya. 2009; 107(2): 213–218, ISSN 0030-4034. (In Russ.). Садовников М. А., Соколов А. Л. Пространственная поляризационная структура излучения, формируемая уголковыми отражателями с неметаллизированными гранями. Оптика и спектроскопия. 2009; 107(2): 213–218, ISSN 0030-4034.
  21. A. L. Sokolov Optical vortices with axisymmetric polarization structure, Opt. Eng., 56 (1) 014109-1-9 (2017). http://dx.doi.org/10.1117/1.OE.56.1.014109
  22. G. Ruffato, M. Girardi, M. Massari. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams, Scientific reports, 8 (2018) 10248, doi: 10.1038/s41598-018-28447-1
  23. Sokolov A. L. Comparative Analysis of the Characteristics of Polar and Non-Polar Spiral Polarization Rotators. Opt. and Photon. J. 2020; 10, 13. doi: 10.4236/opj.2020.102002.
  24. Paterson C. Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication. Phys. Rev. Letters. 2005; 94:153901. DOI: https://doi.org/10.1103/PhysRevLett.94.153901
  25. Klimchitskaya G. L., Korikov C. C., Petrov V. M. Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2015;92: 125419. DOI: https://doi.org/10.1103/PhysRevB.92.125419.
  26. Klimchitskaya G. L., Korikov C. C., Petrov V. M. Erratum: Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2016; 93, 159906(E). doi: 10.1103/PhysRevB.92.125419.
  27. Klimtchitskaya G. L., Mostepanenko V. M., Petrov V. M. Impact of chemical potential on the reflectance of graphene in the infrared and microwave domains. Phys. Rev. A. 2018; 98: 023809-1-10. https://doi.org/10.1103/PhysRevA.98.023809
  28. Petrov V. M., Karaboue C., Petter J., Tschudi N., Bryksin V. V., Petrov M. P. A dynamic narrow-band tunable optical filter. Appl. Phys. B. 2003;76:41–44. https://doi.org/10.1007/s00340-002-1052-z.
  29. Khorin P. A., Degtyarev S. A., Khonina S. N. Application Study of a Refractive Biconical Axicon for Azimuthal and Radial Polarization Detection. Photonics Russia. 2023;17(5): 394–404. doi: 10.22184/1993-7296.FRos.2023.17.5.394.406
  30. Gleim A. V., Chistyakov V. V., Bannik O. L. et all. Sideband quantum communication at 1 Mbit/s on a metropolitan area network. Journal of Optical Technology. 2017; 24:362. DOI: 10.1364 /JOT.84.000362.
  31. Vashukevich E. A., Lebedev V. V., Ilichev I. V., Agruzov P. M., Shamrai A. V., Petrov V. M., Golubeva T. Yu. Broadband Chip-Based Source of Quantum Noise with Electrically Controllable Beam Splitte. Phys. Rev. Applied. 2022; 17(6): 064039. doi: 10.1103/PhysRevApplied.17.064039.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Propagation geometry of the beams with axial symmetry: 1 – transmitter (located on the ground), 2 – receiver (located on the satellite); ϕ – rotation angle of the radius vector r, z – direction of propagation

Download (83KB)
3. Fig. 2. An experiment – Left: passage of an axially polarized beam representing a superposition of Hermite-Gauss modes through a turbulent medium; On the right: the presence of a “fork” in the interference pattern (the images were obtained in an interferometer using the retroreflectors as the mirrors [20])

Download (441KB)
4. Tab. 1

Download (410KB)
5. Tab. 2

Download (968KB)

Copyright (c) 2023 Sokolov A.L., Petrov V.M., Venediktov V.Y., Reshetnikov D.D.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies