Assessment Procedure for the Advantages of LED Phyto-Strip Application in the Industrial Greenhouse Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The efficiency of LED phyto-strip in the field of photosynthetically active radiation has been assessed and compared with the alternative phyto-irradiators used in the industrial greenhouse complexes. The phyto-strip efficiency in the field of photosynthetically active radiation was equal to 42% that was 4.7 times higher than the efficiency of a full-spectrum grow lamp and 4.4 times higher than the efficiency of a fluorescent lamp. The spectral and energy characteristics of the LED phyto-strip have been determined. The average value of the photosynthetic photon flux density applicable for the plant growing process (≈300 µmol / m2 / s) is achieved when radiation is obtained from one meter of phyto-strip at a distance of ≈20 cm from the irradiated area when current is passed through it. Due to its high efficiency, the phyto-strip will improve the growth results of various crops in the autonomous agro-industrial enterprises, and will also reduce the energy costs.

Full Text

Restricted Access

About the authors

Mariya M. Degtereva

St. Petersburg Electrotechnical University “LETI”

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0001-6797-0595

postgraduate student

Russian Federation, Saint-Petersburg

Yevgeniy Levin

St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru
ORCID iD: 0009-0000-3811-487X

postgraduate student

Russian Federation, Saint-Petersburg

Alexander E. Degterev

St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru
ORCID iD: 0000-0002-6151-6567

postgraduate student

 

Russian Federation, Saint-Petersburg

Alexander A. Bogdanov

St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru
ORCID iD: 0009-0004-2540-4228

master student

Russian Federation, Saint-Petersburg

Ivan A. Lamkin

St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru
ORCID iD: 0000-0002-3680-7725

Cand. of Tech. Sciences, Associate Professor of the Department of Photonics

Russian Federation, Saint-Petersburg

Sergey A. Tarasov

St. Petersburg Electrotechnical University “LETI”

Email: journal@electronics.ru
ORCID iD: 0000-0002-6321-0019

Doctor of Technical Sciences, Head of the Department of Photonics

Russian Federation, Saint-Petersburg

Pavel A. Sergeev

Svetoyar LLC

Email: journal@electronics.ru

Engineer, General Director

Russian Federation, Saint-Petersburg

References

  1. Chang M-H., Das D., Varde P. V., Pecht M. Light emitting diodes reliability review. Microelectronics Reliability. 2012; 52(5): 762–782. DOI: https://doi.org/10.1016/j.microrel.2011.07.063
  2. Yang Z-C., Kubota C., Chia P-L., Kacira M. Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Scientia Horticulturae. 2012; 136: 81–86. DOI: https://doi.org/10.1016/j.scienta.2011.12.023
  3. Tennessen D. J., Singsaas E. L., Sharkey T. D. Light-emitting diodes as a light source for photosynthesis research. Photosynthesis Research. 1994; 39: 85–92. DOI: https://doi.org/10.1007/BF00027146
  4. Fujiwara K, Sawada T, Kimura Y, Kurata K. Application of an automatic control system of photosynthetic photon flux density for LED–low light irradiation storage of green plants. HortTechnology. 2005; 15: 781–786. DOI: https://doi.org/10.21273/HORTTECH.15.4.0781
  5. Gong Z., Jin Sh., Chen Y. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. Journal of Applied Physics. 2010; 107(1): 013103–013103–6. DOI: https://doi.org/10.1063/1.3276156
  6. Bochkareva N. I., Gorbunov R. I., Klochkov A. V., Lelikov Yu. S., Martynov I. A., Rebane Yu. T., Belov A. S., Shreter Yu. G. Optical properties of blue light-emitting diodes in the InGaN/GaN system at high current densities. Physics of Semiconductor Devices. 2008; 42: 1384–1390. DOI: https://doi.org/10.1134/S1063782608110225
  7. Pikhtin A. N. Quantum and Optical Electronics / Textbook. – M.: Abris. 2012. 656 p. (In Russ.). Пихтин А. Н. Квантовая и оптическая электроника / Учебник. – М.: Абрис, 2012. 656 C.
  8. Romanovich M. M., Lamkin I. A., Tarasov S. A. Accounting the quantum-confined Stark effect on the determination of the active LED region temperature. Journal of Physics Conference Series. 2019; 1400: 066046. DOI: https://doi.org/10.1088/1742-6596/1400/6/066046
  9. Menkovich E. A., Tarasov S. A., Lamkin I. A., Suihkonen S., Svensk O., Lipsanen H. Investigation of physical processes occurring at low temperatures and currents in light-emitting nanoheterostructures based on semiconductor nitrides. Nanophysics and nanotechnologies MIPT Proceedings. 2014; 6(1): 12–19. (In Russ.). Менькович Е. А., Тарасов С. А., Ламкин И. А., Suihkonen S., Svensk O., Lipsanen H. Исследование физических процессов, возникающих в условиях низких температур и токов в светоизлучающих наногетероструктурах на основе полупроводниковых нитридов. Нанофизика и нанотехнологии. Труды МФТИ. 2014; 6(1): 12–19.
  10. Pikhtin A. N., Tarasov S. A., Menkovich E. A. Patent No. 2473149 C1 of the Russian Federation, IPC H01L 21/66. Method for determining the temperature of the active area of the LED: No. 2011147653/04: application 23.11.2011: publ. 20.01.2013. Пихтин А. Н., Тарасов С. А., Менькович Е. А. Патент № 2473149 C1 РФ, МПК H01L 21/66. Способ определения температуры активной области светодиода: № 2011147653/04: заявл. 23.11.2011: опубл. 20.01.2013.
  11. GOST R 57671-2017. Irradiation devices with LED light sources for greenhouses. General technical conditions. – M.: Standartinform. 2017. (In Russ.). ГОСТ Р 57671-2017. Приборы облучательные со светодиодными источниками света для теплиц. Общие технические условия. – М.: Стандартинформ. 2017.
  12. GOST 34819-2021. Lighting devices. Lighting requirements and test methods. – M.: Russian Institute for Standardization. 2022. (In Russ.) ГОСТ 34819-2021. Приборы осветительные. Светотехнические требования и методы испытаний. – М.: Российский институт стандартизации. 2022.
  13. Kiang N. Y., Siefert J., Govindjee G., Blankenship R. E. Spectral Signatures of Photosynthesis. I. Review of Earth Organisms. Astrobiology. 7: 222–251. DOI: https://doi.org/10.1089/ast.2006.0105
  14. Robert B., Cogdell R., Grondelle R. The Light-Harvesting System of Purple Bacteria. Light-Harvesting Antennas in Photosynthesis. 2003; DOI: https://doi.org/10.1007/978-94-017-2087-8_5
  15. Yan Z. N., He D. X., Niu G. H., Zhou Q., Qu Y. H. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Int. J. Agric & Biol. Eng. 2020; 13(2): 33–40. DOI: https://doi.org/10.21273/HORTSCI14236-19
  16. Avendaño-Abarca V. H., González-Sandoval D. C., Munguía-López J. P., Hernández-Cuevas R., Luna-Maldonado A. I., Vidales-Contreras J. A., Niño-Medina G., Rodríguez-Fuentes H. Growth and total nutrimental absorption of baby romaine lettuce cultivated with led lighting under plant factory system. Informacion Tecnica Economica Agraria. 2020; 116(4): 280–293. DOI: https://doi.org/10.12706/itea.2020.011
  17. Armanda D. T., Guinée J. B., Tukker A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability – A review. Global Food Security. 2019; 22: 13–24. DOI: https://doi.org/10.1016/j.gfs.2019.08.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. White LED (a) and red LED (b), led strip section (c), LED phytolamp (d) and fluorescent lamp (e)

Download (253KB)
3. Fig. 2. Installation diagram for measuring the spectral and energy characteristics of LEDs

Download (171KB)
4. Fig. 3. Volt-ampere characteristics of white (1, 2) and red (3, 4) LEDs

Download (67KB)
5. Fig. 4. Spectral characteristics of led strip section (1), fluorescent lamp (2) and phytolamp (3)

Download (122KB)
6. Fig. 5. Change in the peak emission wavelength of blue crystal white LED (a) and red LED (b)

Download (143KB)
7. Fig. 6. Efficiency characteristic of led strip section

Download (65KB)
8. Fig. 7. Dependence of the PPFD value on the distance for all studied radiation sources (1 – one meter of led strip, 2 – fluorescent lamp, 3 – LED phytolamp) (a); dependence of the photosynthetic photon flux of the led strip section (b) and the efficiency of the device in the PAR region (c) on the current

Download (238KB)
9. Fig. 8. Absorption spectra of the main photochemical plant pigments and the emission spectrum of the led strip (1 – chlorophyll a, 2 – chlorophyll b, 3 – chlorophyll d, 4 – lutein, 5 – beta-carotene, 6 – led strip, 7 – fluorescent lamp, 8 – LED lamp)

Download (234KB)

Copyright (c) 2023 Degtereva M.M., Levin Y., Degterev A.E., Bogdanov A.A., Lamkin I.A., Tarasov S.A., Sergeev P.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies