Sillenite-Based Terahertz Radiation Receivers: Design Aspects
- Authors: Petrov V.M.1, Ludnikov G.A.2
-
Affiliations:
- Saint-Petersburg State University
- National Research University ITMO
- Issue: Vol 17, No 5 (2023)
- Pages: 372-377
- Section: Nanophotonics
- URL: https://journals.eco-vector.com/1993-7296/article/view/628289
- DOI: https://doi.org/10.22184/1993-7296.FRos.2023.17.5.372.377
- ID: 628289
Cite item
Abstract
The possible application of crystals from the sillenite group (Bi12SiO20, Bi12GeO20, Bi12TiO20) to detect radiation in the terahertz (near infrared) range is considered. Photosensitivity for the spectral range of 3–30 μm is provided by application of the shallow traps located near the bottom of the conduction band. The crystal sections are determined, at which the electro-optical and piezoelectric effects can be used to develop a voltage on the surface electrodes. The electrodes made in the form of an interdigital transducer or a spiral complement the device with new functional capabilities.
Full Text

About the authors
V. M. Petrov
Saint-Petersburg State University
Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-8523-0336
Dr. of Physical and Mathematical Sciences (radiophysics), Dr. of Physical and Mathematical Sciences (optics), professor, Department of General Physics – 1
Belarus, Saint-PetersburgG. A. Ludnikov
National Research University ITMO
Email: journal@electronics.ru
ORCID iD: 0009-0004-9436-0118
student, Department of Photonics
Russian Federation, Saint-PetersburgReferences
- Chen H.-T., Padilla W. J., Zide J. M., Gossard A. C., Taylor A. J., Averitt R. D. Active terahertz metamaterial devices. Nature. 2006;444:597–600. doi: 10.1038/nature05343
- Chen H.-T., Lu H., Azad A. K., Averitt R. D., Gossard A. C., Trugman S. A. et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express. 2008;16:7641–7648. doi: 10.1364/OE.16.007641.
- Jun Y. C., Gonzales E., Reno J. L., Shaner E. A., Gabbay A., Brener I. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics Express. 2012;20:1903–1911. doi: 10.1364/OE.20.001903.
- Blackledge J. M., Boretti A., Rosa L., Castelletto S. Fractal Graphene Patch Antennas and the THz Communications Revolution. IOP Conf. Series: Materials Science and Engineering. 2021;1060: 012001. IOP Publishing doi: 10.1088/1757-899X/1060/1/012001.
- Xingang R., Wei E., Wallace C. H. Choy. Tuning optical responses of metallic dipole nanoantenna using grapheme. Optics Express, 2013;21(26):3182–31829. doi: 10.1364/OE.21.031824.
- Klimchitskaya G. L., Korikov C. C., Petrov V. M. Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2015;92:125419. https://doi.org/10.1103/PhysRevB.92.125419.
- Klimchitskaya G. L., Korikov C. C., Petrov V. M. Erratum: Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2016;93:159906(E). doi: 10.1103/PhysRevB.92.125419.
- Klimtchitskaya G. L., Mostepanenko V. M., Petrov V. M. Impact of chemical potential on the reflectance of graphene in the infrared and microwave domains. Phys. Rev. A. 2018;98:023809-1-10. https://doi.org/10.1103/PhysRevA.98.023809.
- Ou J.-Y., Plum E., Zhang J., Zheludev N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology. 2013;8:252–255. doi: 10.1038/nnano.2013.25.
- Chen K, Razinskas G, Feichtner T, Grossmann S, Christiansen S, Hecht B. Electromechanically tunable suspended optical nanoantenna. Nano Letters. 12 Applications of Nanobiotechnology. 2016;16:2680–2685. doi: 10.1021/acs. nanolett.6b00323.
- Klimtchitskaya G. L., Mostepanenko V. M., Petrov V. M., Tschudi T. Optical Chopper Driven by the Casimir Force. Phys. Rev. Applied. 2018;10:014010-1-10 https://doi.org/10.1103/PhysRevApplied.10.014010.
- Petrov M. P., Shlyagin M. G., Shalaevskiy N. O., Petrov V. M., Khomenko A. V. Novyj mekhanizm zapisi izobrazhenij v fotorefraktivnyh kristallah. ZHTF. 1995; 55(11): 2247–2250. Петров М. П., Шлягин М. Г., Шалаевский Н. О., Петров В. М., Хоменко А. В. Новый механизм записи изображений в фоторефрактивных кристаллах. ЖТФ. 1995; 55(11): 2247–2250.
- Lauer R. B. Electron effective mass and conduction-band effective density and states in Bi12SiO20. J. Appl. Phys. 1974; 45(4):1794–1797.
- Petrov M. P., Petrov V. M., Zouboulis I. S., Xu L. P. Two-wave and induced three- wave mixing on a thin Bi12TiO20 hologram. Optics Communications. 1997;134: 569–579. doi: 10.1016/S0030-4018(96)00370-7.
- Abrahams S. C., Bernstein J. L., Svensson C. Crystal structure and absolute piezoelectric d14 coefficients in laevorotatory Bi12SiO20. Journal of Chem. Phys. 1979;71(2): 788–792.
- Shandarov S. M., Shmakov S. S., Burimov N. I., Syvaeva O. S., Kargin Yu. F., Petrov V. M. Detection of the Contribution of the inverse Flexoelectric Effect to the Photorefractive Response in a Bismuth Titanium Oxide Single Crystal. JETP Letters. 2012; 95(12):618–621. https://doi.org/10.1134/S0021364012120144.
Supplementary files
