Sillenite-Based Terahertz Radiation Receivers: Design Aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possible application of crystals from the sillenite group (Bi12SiO20, Bi12GeO20, Bi12TiO20) to detect radiation in the terahertz (near infrared) range is considered. Photosensitivity for the spectral range of 3–30 μm is provided by application of the shallow traps located near the bottom of the conduction band. The crystal sections are determined, at which the electro-optical and piezoelectric effects can be used to develop a voltage on the surface electrodes. The electrodes made in the form of an interdigital transducer or a spiral complement the device with new functional capabilities.

Full Text

Restricted Access

About the authors

V. M. Petrov

Saint-Petersburg State University

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-8523-0336

Dr. of Physical and Mathematical Sciences (radiophysics), Dr. of Physical and Mathematical Sciences (optics), professor, Department of General Physics – 1

Belarus, Saint-Petersburg

G. A. Ludnikov

National Research University ITMO

Email: journal@electronics.ru
ORCID iD: 0009-0004-9436-0118

student, Department of Photonics

Russian Federation, Saint-Petersburg

References

  1. Chen H.-T., Padilla W. J., Zide J. M., Gossard A. C., Taylor A. J., Averitt R. D. Active terahertz metamaterial devices. Nature. 2006;444:597–600. doi: 10.1038/nature05343
  2. Chen H.-T., Lu H., Azad A. K., Averitt R. D., Gossard A. C., Trugman S. A. et al. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express. 2008;16:7641–7648. doi: 10.1364/OE.16.007641.
  3. Jun Y. C., Gonzales E., Reno J. L., Shaner E. A., Gabbay A., Brener I. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics Express. 2012;20:1903–1911. doi: 10.1364/OE.20.001903.
  4. Blackledge J. M., Boretti A., Rosa L., Castelletto S. Fractal Graphene Patch Antennas and the THz Communications Revolution. IOP Conf. Series: Materials Science and Engineering. 2021;1060: 012001. IOP Publishing doi: 10.1088/1757-899X/1060/1/012001.
  5. Xingang R., Wei E., Wallace C. H. Choy. Tuning optical responses of metallic dipole nanoantenna using grapheme. Optics Express, 2013;21(26):3182–31829. doi: 10.1364/OE.21.031824.
  6. Klimchitskaya G. L., Korikov C. C., Petrov V. M. Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2015;92:125419. https://doi.org/10.1103/PhysRevB.92.125419.
  7. Klimchitskaya G. L., Korikov C. C., Petrov V. M. Erratum: Theory of reflectivity of graphene-coated material plates. Phys. Rev. B. 2016;93:159906(E). doi: 10.1103/PhysRevB.92.125419.
  8. Klimtchitskaya G. L., Mostepanenko V. M., Petrov V. M. Impact of chemical potential on the reflectance of graphene in the infrared and microwave domains. Phys. Rev. A. 2018;98:023809-1-10. https://doi.org/10.1103/PhysRevA.98.023809.
  9. Ou J.-Y., Plum E., Zhang J., Zheludev N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology. 2013;8:252–255. doi: 10.1038/nnano.2013.25.
  10. Chen K, Razinskas G, Feichtner T, Grossmann S, Christiansen S, Hecht B. Electromechanically tunable suspended optical nanoantenna. Nano Letters. 12 Applications of Nanobiotechnology. 2016;16:2680–2685. doi: 10.1021/acs. nanolett.6b00323.
  11. Klimtchitskaya G. L., Mostepanenko V. M., Petrov V. M., Tschudi T. Optical Chopper Driven by the Casimir Force. Phys. Rev. Applied. 2018;10:014010-1-10 https://doi.org/10.1103/PhysRevApplied.10.014010.
  12. Petrov M. P., Shlyagin M. G., Shalaevskiy N. O., Petrov V. M., Khomenko A. V. Novyj mekhanizm zapisi izobrazhenij v fotorefraktivnyh kristallah. ZHTF. 1995; 55(11): 2247–2250. Петров М. П., Шлягин М. Г., Шалаевский Н. О., Петров В. М., Хоменко А. В. Новый механизм записи изображений в фоторефрактивных кристаллах. ЖТФ. 1995; 55(11): 2247–2250.
  13. Lauer R. B. Electron effective mass and conduction-band effective density and states in Bi12SiO20. J. Appl. Phys. 1974; 45(4):1794–1797.
  14. Petrov M. P., Petrov V. M., Zouboulis I. S., Xu L. P. Two-wave and induced three- wave mixing on a thin Bi12TiO20 hologram. Optics Communications. 1997;134: 569–579. doi: 10.1016/S0030-4018(96)00370-7.
  15. Abrahams S. C., Bernstein J. L., Svensson C. Crystal structure and absolute piezoelectric d14 coefficients in laevorotatory Bi12SiO20. Journal of Chem. Phys. 1979;71(2): 788–792.
  16. Shandarov S. M., Shmakov S. S., Burimov N. I., Syvaeva O. S., Kargin Yu. F., Petrov V. M. Detection of the Contribution of the inverse Flexoelectric Effect to the Photorefractive Response in a Bismuth Titanium Oxide Single Crystal. JETP Letters. 2012; 95(12):618–621. https://doi.org/10.1134/S0021364012120144.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Circuit of energy bands for crystals of the sillenite group (WV - valence band, WC – conduction band, forbidden band width DW»3,5 eV, DWSTR – depth of shallow traps, DWTR – depth of deep traps)

Download (151KB)
3. Fig. 2. Possible crystal sections, at which the maximum changes in the refractive index Dn and induced electric fields occur due to the piezoelectric effect (the initial state of optical indicatrix is shown in blue, the amended state is shown in red): a – radiation is incident on the crystal along the [001] plane, the external control field E0 is applied along the [100] plane; b – radiation is incident on the crystal along the [111] plane, the external control field E0 is applied along the [111] plane; c and d – spiral forms of electrodes

Download (222KB)

Copyright (c) 2023 Petrov V.M., Ludnikov G.A.