Optimization of Laser Surfacing Technology and Its Effect on Coating Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the results of metallographic and tribotechnical tests of the zones of laser surfacing of the sublayer with a powder containing Fe-Co-Cr-Mo and a composite charge Ni-Cr-B-Si+WC on steel samples 40Kh. It is shown that processing using transverse beam vibrations normal to the scanning velocity vector increases the productivity of the surfacing process. The application of a sublayer not prone to cracking improves the quality of deposited coatings with the addition of a carbide phase, eliminates the formation of cracks in the deposited charge with carbides. An increase in the energy density above the optimal values leads to partial dissolution of carbides, evaporation of carbon, a decrease in the thickness of the sublayer and mixing with the charge with the carbide phase and a decrease in the microhardness of coatings. Laser surfacing at optimal conditions allowed to increase the abrasive wear resistance when tested with loose grains by 11 times compared to the base steel.

Full Text

Restricted Access

About the authors

Vladimir P. Biryukov

Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN)

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0001-9278-6925

Cand. of Scin.(Eng.)

Russian Federation, Moscow

References

  1. Kusinski, J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B. Major L., Marczak J, Lisiecki A. Laser modification of the materials surface layer – A review paper. Bull. Pol. Acad. Sci.-Tech. 2012; 60: 711–728.
  2. Lisiecki A. Tribology and surface engineering. Coatings. 2019; 9: 663–669. doi: 10.3390/coatings9100663.
  3. Lisiecki A. Development of laser welding and surface treatment of metals. Materials 2022, 15: 1765–1773. doi: 10.3390/ma15051765.
  4. Kołodziejczak P., Golanski D., Chmielewski T., Chmielewski M. Microstructure of rhenium doped Ni-Cr deposits produced by laser cladding. Materials. 2021; 14: 2745–2769. doi: 10.3390/ma14112745.
  5. Liu Q. S., Liu X. B., Wang G., Liu Y. F., Meng Y., Zhang S. H. Effect of cu content on microstructure evolution and tribological behaviors of Ni60 composite coatings on 45# steel by laser cladding. Opt. Laser Technol. 2022; 156: 108549. doi: 10.1016/j.optlastec.2022.108549
  6. Huang G., Qu L., Lu Y., Wang Y., Li H., Qin Z., Lu X. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating. Vacuum. 2018; 153:39–42. doi: 10.1016/j.vacuum.2018.03.042.
  7. Zhu L., Wang S., Pan H., Yuan C., Chen X. Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J. Manuf. Process. 2020; 49: 344–354. doi: 10.1016/j.jmapro.2019.12.009.
  8. Li Y., Li Y., Wang W., Lei M., Li X. Synthesis fe-ni protective coating on 45 steel by laser remelting nickel pre-coating dopped with Fe-based amorphous powders.Mater. Charact. 2021; 176: 111129. doi: 10.1016/j.matchar.2021.111129
  9. Shah R., Pai N., Rosenkranz A., Shirvani K., Marian M. Tribological behavior of additively manufactured metal components. J. Manuf. Mater. Process. 2022; 6:138. doi: 10.3390/jmmp6060138.
  10. Yu J., Chen J., Ho H. Effect of laser cladding Ti/B4C/dr40-based composite coatings for the surface strengthening of shaft part. Opt. Laser Technol. 2023; 157: 108721. doi: 10.1016/j.optlastec.2022.108721.
  11. Zhu Y., Yang Y., Mu X., Wang W., Yao Z., Yang H. Study on wear and RCF performance of repaired damage railway wheels: assessing laser cladding to repair local defects on wheels. Wear. 2019: 430–431; 126–136. doi: 10.1016/j.wear.2019.04.028.
  12. Zhu L., Xue P., Lan Q., Meng G., Ren Y., Yang Z., Xu P., Liu Z. Recent research and development status of laser cladding: a review. Opt. Laser Technol. 2021; 138: 106915. doi: 10.1016/j.optlastec.2021.106915.
  13. Liu J., Yu H., Chen C., Weng F., Dai J. Research and development status of laser cladding on magnesium alloys: a review. Opt. Lasers Eng. 2017; 93: 195–210. doi: 10.1016/j.optlaseng.2017.02.007
  14. Hulka I., Utu I. D., Avram D., Dan M. L., Pascu А., Stanciu E. M., Roat I. C. Influence of the laser cladding parameters on the morphology, wear and corrosion resistance of WC–Co/NiCrBSi composite coatings. Materials. 2021; 14: 5583–5596. doi: 10.3390/ma14195583.
  15. Vostrák M., Houdková S., Bystrianský M. Cesánek Z. The influence of process parameters on structure and abrasive wear resistance of laser clad WC-NiCrBSi coatings. Mater. Res. Express. 2018; 5: 096522.
  16. Amado J., Tobar M., Yáñez A., Amigó V., Candel J. Crack Free Tungsten Carbide Reinforced Ni(Cr) layers obtained by laser cladding. Phys. Procedia. 2011; 12: 338–344. doi: 10.1016/j.phpro.2011.03.043.
  17. Makarov A., Korobov Y., Soboleva N., Khudorozhkova Y., Vopneruk A., Balu P., Barbosa M. M., Malygina I., Burov S., Stepchenkov A. Wear-resistant nickel-based laser clad coatings for high-temperature applications. Lett. Mater. 2019; 9: 470–474. doi: 10.22226/2410-3535-2019-4-470-474.
  18. Zhou Z., Jiang F., Yang F., Yang Y. Peng Liang Novel laser cladding FeCoNiCrNb0.5Mox high-entropy alloy coatings with excellent corrosion resistance. Materials Letters. 2023; 335: 133714. doi: 10.1016/j.matlet.2022.133714.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross-section of laser surfacing zones with an oscillating beam ×50: a) sublayer Fe-Co-Cr-Mo; b) main layer Ni-Cr-B-Si+WC

Download (823KB)
3. Fig. 2. Microstructure of surfacing zones at the boundary with the base material with a beam diameter of 3 mm ×200: a) P = 700 W, V = 7 mm/s; b) P = 1000 W, V = 7 mm/s

Download (1MB)
4. Fig. 3. Graphs of the microhardness of coatings depending on the layer depth: a) P = 1 000 W, V = 7 mm/s; b) P = 1 000 W, V = 5 mm/s

Download (208KB)
5. Fig. 4. Distribution of elements in the deposited layer Ni-Cr-B-Si+WC (a), tungsten (b), nickel (c), iron (d), chromium (e), carbon (f)

Download (1MB)
6. Fig. 5. Weight loss of samples during wear by free abrasive grain: 1 – 40Kh steel, 2 – Ni-Cr-B-Si+WC, 96 J/mm2, 3 – Ni-Cr-B-Si+WC, 48 J/mm2

Download (113KB)

Copyright (c) 2023 Biryukov V.P.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies