Formation of Blackened Aluminium by Vacuum-Thermal Evaporation for IR Emitters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The creation of materials, such as black coatings, operating in the near and middle IR ranges, is a task of current scientific interest. Layers of such materials can be used to improve the efficiency of IR emitters. One of the perspective materials that is well consistent with MEMS technology is a black alumina coating. This article presents the fabrication results of a black aluminum oxide layer by vacuum-thermal evaporation method, and the study of its absorption features in the IR region of the spectrum. Experimental samples of black alumina layers showed absorption in the range of 2,2 to 28 um at 84% and showed high temperature stability up to 800 °C.

Full Text

Restricted Access

About the authors

A. M. Tarasov

National Research University of Electronic Technology (MIET)

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0003-3648-8717

engineer Institute

Russian Federation, Zelenograd

D. V. Novikov

National Research University of Electronic Technology (MIET)

Email: journal@electronics.ru
ORCID iD: 0000-0002-9518-1208

engineer Institute

Russian Federation, Zelenograd

D. V. Gorelov

National Research University of Electronic Technology (MIET)

Email: journal@electronics.ru
ORCID iD: 0000-0002-0887-9406

head of Research Laboratory

Russian Federation, Zelenograd

S. S. Genaralov

Scientific-Manufacturing Complex “Technological Centre”

Email: journal@electronics.ru
ORCID iD: 0000-0002-7455-7800

head of Research Laboratory

Russian Federation, Zelenograd

V. V. Amelichev

Scientific-Manufacturing Complex “Technological Centre”

Email: journal@electronics.ru
ORCID iD: 0000-0002-4204-2626

Cand.of Sc. (Eng.), head of the Microstem Technology Department Scientific-Manufacturing Complex

Russian Federation, Zelenograd

References

  1. Cai L, E J, Li J, Ding J, Luo B. A comprehensive review on combustion stabilization technologies of micro/meso-scale combustors for micro thermophotovoltaic systems: Thermal, emission, and energy conversion. Fuel. 2023;335:126660. https://doi.org/10.1016/j.fuel.2022.126660.
  2. Carstens S, Meyer R, Enke D. Towards Macroporous α-Al2O3—Routes, Possibilities and Limitations. Materials. 2020;13:1787. https://doi.org/10.3390/ma13071787.
  3. He Z, Yan Y, Zhao T, Zhang Z, Mikulčić H. Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems. Renewable and Sustainable Energy Reviews. 2022;165:112595. https://doi.org/10.1016/j.rser.2022.112595.
  4. Hu J, Li Y, Zhen Y, Chen M, Wan H. n situ FTIR and ex situ XPS/HS-LEIS study of supported Cu / Al2O3 and Cu / ZnO catalysts for CO2 hydrogenation. Chinese Journal of Catalysis. 2021;42:367–75. https://doi.org/10.1016/S1872-2067(20)63672-5.
  5. Qian M., Shi Q., Qin L., Huang J., Guo C., Liu Y. et al. Fabrication of Selective Thermal Emitter with Multilayer Films for Mid-/Low-Temperature Infrared Stealth with Radiative Cooling. Photonics. 2023;10:645. https://doi.org/10.3390/photonics10060645.
  6. Stanca S. E., Hänschke F., Ihring A., Zieger G., Dellith J., Kessler E. et al. Chemical and Electrochemical Synthesis of Platinum Black. Sci. Rep. 2017;7:1074. https://doi.org/10.1038/s41598-017-01040-8.
  7. Zhou Z., Huang J. Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system. Aerospace Science and Technology. 2021;110:106490. https://doi.org/10.1016/j.ast.2021.106490.
  8. Zhu H., Li Q., Tao C., Hong Y., Xu Z., Shen W. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 2021;12:1805. https://doi.org/10.1038/s41467-021-22051-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1.URM-3279011 Instalation scheme

Download (136KB)
3. Fig. 2. A layer of black aluminum after one (a) and three (b) deposition processes (SEM images)

Download (935KB)
4. Fig. 3. Absorption spectra of black aluminum deposited on the polished side of a silicon wafer

Download (293KB)
5. Fig. 4. Absorption spectra of black aluminum deposited on the unpolished side of a silicon wafer

Download (226KB)
6. Fig. 5. Dependence of the intensity of reflection of IR radiation at 800 cm-1 on the number of vapor deposition operations on a polished and unpolished silicon substrate

Download (219KB)
7. Fig. 6. Samples of black aluminum coating: a) before heating; b) after heating to 800 °C

Download (335KB)
8. Fig. 7. Absorption spectra of black aluminum coating before and after heating operations with varying heating temperature

Download (785KB)
9. Fig. 8. Black aluminum coating: a) before heating operation; b) after heating operation (SEM image)

Download (411KB)

Copyright (c) 2023 Tarasov A.M., Novikov D.V., Gorelov D.V., Genaralov S.S., Amelichev V.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies