Increasing the operational life of chisel steels in the case of laser hardening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper examines the results of micrographic and tribotechnical tests of chisel steel X12 in a friction pair with the through hardened steel 40X when lubricated with the industrial oil I20. It is shown that the use of lateral oscillations of the laser beam significantly increases the processing productivity. It has been established that the high-quality laser thermohardening of sample edges is possible only by applying lateral oscillations of the beam when exposed to the continuous laser radiation. In the case of optimal laser processing conditions and hardening of 50% of the sample friction surface, the wear resistance properties have been increased by 1.6 times compared to the through hardening.

Full Text

Restricted Access

About the authors

Vladimir P. Biryukov

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0001-9278-6925

leading researcher, Ph.D. in technical sciences

Russian Federation, Moscow

Yaroslav A. Goryunov

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: journal@electronics.ru
ORCID iD: 0009-0002-1614-0174

junior researcher

Russian Federation, Moscow

References

  1. Cui C., Guo Z., Liu Y., Xie Q., Wang Z., Hu J., Yao Y. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding. Optics & Laser Technology. 2007; 39 (8); 1544–1550. doi: 10.1016/j.optlastec.2006.12.005.
  2. Krishna B. V., Bandyopadhyay A. Surface modification of AISI 410 stainless steel using laser engineered net shaping (LENSTM). Materials & Design. 2009; 30 (5);1490–1496. doi: 10.1016/j.matdes.2008.08.003.
  3. Shtarbakov V., Dikova T., Stavrev D. Microstructure of surface layer of T1 and D2 steels after laser melting. Advances in Materials and Processing Technologies. 2015; 1 (1–2);.124–129. doi: 10.1080/2374068X.2015.1116224.
  4. Baykara T., Keskin N. Effects of Laser Hardening Treatment on the Wear Properties of the Vanadis 4 Extra and Vanadis 10 Tool Steels.International. Journal of Metallurgy and Metal Physics. 2019; 4; 029.
  5. Kusinski J., Kac S, Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., L. Major B., Marczak J., Lisiecki A. Laser modification of the materials surface layer–a review paper. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2012; 4; 711–728. doi: 10.2478/v10175-012-0083-9.
  6. Telasang G., Majumdar J. D., Padmanabham G., Manna I. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surface & Coatings Technology (2014) http://dx.doi.org/10.1016/j.surfcoat.2014.11.058.
  7. Aqida S. N., Brabazon D., Naher S. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method.AIP Conf. Proc. 2012; 1315, 1371–1376. doi: 10.1063/1.3552376
  8. Ameri M. H. Ghaini F. М., Torkamany M. J. Investigation into the efficiency of a fiber laser in surface hardening of ICD-5 tool steel. Optics & Laser Technology. 2018; 107; 150–157. doi: 10.1016/j.optlastec.2018.05.030
  9. El-Batahgy A.M., Ramadan R. A., Moussa A. R. Laser Surface Hardening of Tool Steels – Experimental and Numerical Analysis. Journal of Surface Engineered Materials and Advanced Technology. 2013; 3: 146–153. doi: 10.4236/jsemat.2013.32019.
  10. Al-Tamimi H.M., Al-Roubaiy A.O., Dawood N. M. Improvement of Microstructure and Wear Resistance of X12 Tool Steel by Using Laser Surface Re-Melting Technique. Materials Science Forum. 2021; 1021; 260–269. doi: 10.4028/ href='www.scientific.net/MSF.1021.260' target='_blank'>www.scientific.net/MSF.1021.260.
  11. Yu L., Yuanpeng T., Hui Z., Haijing Z., Yang L. Microstructure and properties of Cr12MoV die steel by laser quenching with different power. IOP Conf. Series: Materials Science and Engineering. 2019; 631; 022032. doi: 10.1088/1757-899X/631/2/022032
  12. Sebek M., Falat L., Orecny M., Petryshynets I., Kovác F., Cerník M. Abrasive wear resistance of modified X37CrMoV5-1 hot work tool steel after heat treatment. International Journal of Materials Research. 2018; 109(5); 460–467.
  13. Amine T., Newkirk J. W. Microstructural and hardness investigation of tool steel D2 processed by laser surface melting and alloying. International Journal of Advanced Manufacturing Technology. 2014; 73; 1427–1435. doi: 10.1007/s00170-014-5882-8
  14. Lesyk D. A., Martinez S., Mordyuk B. N., Dzhemelinskyi V. V., Lamikiz A., Prokopenko G. I., Milman Yu.V., Grinkevych K. E. Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment. Surface & Coatings Technology. 2017; 328; 344–354. doi: 10.1016/j.surfcoat.2017.08.045.
  15. Yasavol N., Abdollah-zadeh A., Ganjali M., Alidokht S. A. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel. Applied Surface Science. 2013; 265; 653–662. doi: 10.1016/j.apsusc.2012.11.070.
  16. Šebek M., Falat L., Kováč F., Petryshynets I., Horňak P., Girman V. The effects of laser surface hardening on microstructural characteristics and wear resistance of AISI H11 hot work tool steel. Arch. Metall. Mater. 2017; 62; 1721–1726. doi: 10.1515/amm-2017-0262.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microsections of laser hardening areas of X12 steel with a spread-out beam (a and c) and an oscillating beam (b and d): a and b – P = 700 W, V = 7 mm/s; c and d – P = 1000 W, V = 10 mm/s

Download (521KB)
3. Fig. 2. Microstructures of laser hardening areas of X12 steel with a spread-out (a, b) and oscillating (c, d) beam

Download (601KB)
4. Fig. 3. Graphs of the microhardness dependence on the depth of a X12 steel layer strengthened by a laser beam: a) a spread-out beam; b) an oscillating beam at P = 1000 W, V = 10 mm/s

Download (110KB)
5. Fig. 4. Wear rate of X12 steel: 1) 56–58 HRC; 2) 9 000–12 000 MPa

Download (43KB)

Copyright (c) 2024 Biryukov V.P., Goryunov Y.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies