Experimental study and modeling of high-frequency performances of Ge-photodiode for microwave optical receiver integrated circuits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A technique and setup for the probe measurement of high-frequency performances of integrated Ge-photodiode are considered accounting for the diode’s actual environment in a photonic (PIC) or electronic-photonic (EPIC) integrated circuit. The key feature of the technique is the application of two coherent laser optical sources with different wavelengths. The measured data are presented for the optoelectronic conversion coefficient of a Ge photodiode in a specially designed measuring (test) PIC based on the electronic-photonic SiGe BiCMOS technology. At the wavelength of 1 550 nm, the frequency band of the Ge photodiode reaches ~30 GHz that makes it possible to use it as a part of integrated optical receivers with a data transmission rate of at least 25 Gbit / s. Using the electromagnetic simulation, a low-signal equivalent circuit model of a Ge-photodiode placed in the PIC (EPIC) is developed allowing the calculation of characteristics of a monolithically integrated optical receiver.

Full Text

Restricted Access

About the authors

Andrey A. Kokolov

Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: journal@electronics.ru
ORCID iD: 0000-0002-8910-4329

Candidate of Technical Sciences, Head of Laboratory IC and SoC

Russian Federation, Tomsk

Feodor I. Sheyerman

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0001-6482-2108

Candidate of Technical Sciences, R&D Director, Research Institute of Microelectronic Systems

Russian Federation, Tomsk

Leonid I. Babak

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0002-2333-0518

Doctor of Technical Sciences, Professor, Head of the Research Institute of Microelectronic Systems

Russian Federation, Tomsk

Dmitry A. Konkin

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0002-5024-0825

Senior lecturer, RSS

Russian Federation, Tomsk

Anton V. Ubaychin

Tomsk State University of Control Systems and Radioelectronics

Email: journal@electronics.ru
ORCID iD: 0000-0001-6284-4645

Associate Professor, RSS

Russian Federation, Tomsk

Artem S. Koryakovtsev

Tomsk State University of Control Systems and Radioelectronics

Email: artem.s.koriakovtsev@tusur.ru
ORCID iD: 0000-0001-6075-390X

Junior researcher of Laboratory IC and SoC

Russian Federation, Tomsk

Evgeniy A. Shutov

Tomsk State University of Control Systems and Radioelectronics

Email: shutov_ea@bk.ru
ORCID iD: 0000-0002-6199-7022

Junior researcher of Laboratory IC and SoC

Russian Federation, Tomsk

References

  1. Sackinger E. Analysis and design of transimpedance amplifiers for optical receivers. – Hoboken: Wileyю 2018. 573 p.
  2. Gao J. Optoelectronic integrated circuit design and device modeling. – Beijing: Higher Education Press. 2011. 292 p.
  3. Razavi B. Design of integrated circuits for optical communications. – Hoboken: Wiley, 2012. 444 p.
  4. Zimmermann H. Silicon Optoelectronic Integrated Circuits. – Vienna: Springer, 2019. 456 p.
  5. Ruckler H., Heinemann B., Winkler W., Barth R., Borngraber J., Drews J., Fisher G. G., Fox A., Grabolla T., Haak U., Knoll D., Korndorfer F., Mai A., Marschmeyer S., Schley P., Schmidt J., Schubert M. A., Schulz K., Tillack B., Wolansky D., Yamomoto Y. A 0.13 um SiGe BiCMOS Technology Featuring fT/fmax of 240/330 GHz and Gate Delays Below 3 ps. IEEE Journal of Solid-State Circuits. 2010; 45(9): 1678–1686. doi: 10.1109/JSSC.2010.2
  6. Dobush I. M., Sheerman F. I., Babak L. I. Integrated circuit of wideband controlled digital attenuator based on SiGe technology. Russian Physics Journal. 2018; 61(11): 149–156. Добуш И. М., Шеерман Ф. И., Бабак Л. И. Интегральная схема широкополосного управляемого цифрового аттенюатора на основе кремний-германиевой технологии. Изв. вузов: Физика. 2018; 61(11): 149–156.
  7. Knoll D., Lischke S., Awny A., Zimmermann L. SiGe BiCMOS for optoelectronics. ECS Trans. 2016; 75(8): 121–139. doi: 10.1149/07508.0121ecst
  8. Knoll D., Richter H., Heinemann B., Lischke S., Yamamoto Y., Zimmermann L., Tillack B. Substrate design and thermal budget tuning for integration of photonic components in a high performance SiGe: C BiCMOS process. ECS Trans. 2013; 50(9): 297–303. doi: 10.1149/05009.0297ecst
  9. Lischke S., Knoll D., Mai C., Awny A., Winzer G., Kroh M., Voigt K., Zimmerman L. Monolithic photonic BiCMOS technology for high-speed receiver applications. 19-th International Conference on Transparent Optical Networks (ICTON). Girona. Spain. 2017. doi: 10.1109/ICTON.2017.8024829.
  10. Lischke S., Knoll D., Mai C., Zimmerman L., Peczek A., Kroh M., Trusch A., Krune E., Voigt K., Mai. A. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Optics Express. 2015: 23(21): 27213–27220. doi: 10.1364/OE.23.027213
  11. Eissa M. H., Awny A., Winzer G., Kroh M., Lischke S., Knoll D., Zimmerman L., Kissinger D., Ulusoy A. C. A wideband monolithically integrated photonic receiver in 0.25-µm SiGe: C BiCMOS technology. 42-nd European Solid-State Circuits Conference, Lausanne. Switzerland. 2016. doi: 10.1109/ESSCIRC.2016.7598347
  12. Koryakovtsev A. S., Kokolov A. A., Konkin D. A., Sheyerman F. I., Babak L. I. A DC-20 GHz integrated linear photonic receiver in a 0.25 um BICMOS SiGe:C technology. Dynamics of Systems Mechanis, ms and Machines (Dynamics). Omsk. Russia. 2019. doi: 10.1109/Dynamics47113.2019.8944658
  13. Koryakovtsev A. S., Kokolov A. A., Sheyerman F. I., Babak L. I. Design of Integrated Photonic Receiver with 20 GHz Bandwidth Based on 0.25-μm SiGe BiCMOS technology. IEEE East-West Design & Test Symposium (EWDTS). Kazan. Russia. 2018. doi: 10.1109/EWDTS.2018.8524699.
  14. Innovations for High Performance Microelectronics. URL: https://www.ihp-microelectronics.com/services/research-and-prototyping-service/mpw-prototyping-service/sigec-bicmos-technologies (17.11.2023).
  15. Tang Y., Wang Z., Wosinski L., Westergren U., He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Opt. Lett. 2010; 35(8): 1290–1292. doi: 10.1364/OL.35.001290.
  16. Vermeulen D., Selvaraja S., Verheyen P., Lepage G., Bogaerts W., Absil P., Van Thourhout D., Roelkens G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express. 2010; 18(17): 18278–18283. doi: 10.1364/OE.18.018278.
  17. Carroll L., Lee J.-S., Scarcella C., Gradkowski K., Duperron D., Lu H., Zhao Y., Eason C., Morrissey P., Rensing M., Collins S., Hwang H. Y., O’Brien P. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Apllied Science. 2016; 6(12): 426. doi: 10.3390/app6120426.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of a Ge photodiode in the electronic-photonic SiGe technology

Download (240KB)
3. Fig. 2. PIC for measuring the Ge photodiode characteristics: a) layout; b) photography of the produced PIC with an optical probe connected to one of the inputs and a connected 5-pin microwave probe (dimensions of the PIC: 2.26 × 1.26 mm2)

Download (651KB)
4. Fig. 3. Experimental probe station setup for measuring the high-frequency characteristics of a Ge-photodiode: a) block diagram; b) general view: OG – optical generator, С – combiner, P – polarizer, PS – probe station, OP – optical probe, MP – microwave probe, PD – photodiode, SA – spectrum analyzer, BT – bias tee, PS – power supply, X1 – contact group, ML – matched load

Download (505KB)
5. Fig. 4. Measured and simulated normalized AFR of the Ge-photodiode transducer coefficient

Download (111KB)
6. Fig. 5. Equivalent circuit of a photodiode in the measuring PIC: a) small-signal model of a Ge-photodiode together with the microwave transmission lines; b) schematic for determining the model parameters C'PD and R's in the CAD tool

Download (63KB)
7. Fig. 6. Layout of the connecting microwave transmission lines for simulation in the Momentum (CAD tool ADS)

Download (144KB)

Copyright (c) 2024 Kokolov A.A., Sheyerman F.I., Babak L.I., Konkin D.A., Ubaychin A.V., Koryakovtsev A.S., Shutov E.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies