The effect of substrate temperature on the optical properties of GaSe thin films obtained by PECVD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

GaSe thin films were first obtained by plasma-enhanced chemical vapor deposition (PECVD), where high-purity elemental gallium and selenium were used as starting materials. The interaction between the elements was initiated by HF discharge (40.68 MHz) at a reduced pressure of 0.1 Torr. The composition, surface morphology, structural and optical properties of gallium selenide films were investigated as a function of substrate temperature. The deposited polycrystalline GaSe films were obtained on sapphire substrate at temperatures of 250 °C and 350 °C, and amorphous GaSe films were obtained at 150 °C.

Full Text

Restricted Access

About the authors

M. A. Kudryashov

Nizhny Novgorod State Technical University n. a. Alekseev; Lobachevsky University

Author for correspondence.
Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

L. A. Mochalov

Nizhny Novgorod State Technical University n. a. Alekseev; Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

Yu. P. Kudryashova

Nizhny Novgorod State Technical University n. a. Alekseev; Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

E. A. Slapovskaya

Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

M. A. Vshivtsev

Nizhny Novgorod State Technical University n. a. Alekseev; Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

R. N. Kriukov

Lobachevsky University

Email: journal@electronics.ru
Russian Federation, Nizhny Novgorod

References

  1. Ares P., Novoselov K. S. Recent advances in graphene and other 2D materials. Nano Mater. Sci. 2022; 4(1): 3–9. doi: 10.1016/j.nanoms.2021.05.002.
  2. Das S., Sebastian A., Pop E., McClellan C.J., Franklin A. D., Grasser T., Knobloch T., Illarionov Yu., Penumatcha A. V., Appenzeller J., Chen Z., Zhu W., Asselberghs I., Li L.-J., Avci U. E., Bhat N., Anthopoulos T. D., Singh R. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021; 4(11):786–799 doi: 10.1038/s41928-021-00670-1.
  3. Malik M., Iqbal M. A., Choi J. R., Pham P. V. 2D materials for efficient photodetection: overview, mechanisms, performance and UV-IR range applications. Front. Chem. 2022; 10:905404. doi: 10.3389/fchem.2022.905404.
  4. Turunen, M., Brotons-Gisbert, M., Dai, Y., Wang Y., Scerri E., Bonato C., Jöns K. D., Sun Z., Gerardot B. D. Quantum photonics with layered 2D materials. Nat. Rev. Phys. 2022; 4(4):219–236. doi: 10.1038/s42254-021-00408-0.
  5. Katiyar A. K., Hoang A. T., Xu D., Hong J., Kim B. J., Ji S., Ahn J.-H. 2D materials in flexible electronics: recent advances and future prospectives. Chem. Rev. 2024; 124(2):318–419. doi: 10.1021/acs.chemrev.3c00302.
  6. Grzonka J., Claro M. S., Molina-Sánchez A., Sadewasser S., Ferreira P. J. Novel polymorph of GaSe. Adv. Funct. Mater. 2021; 31(48):2104965. doi: 10.1002/adfm.202104965
  7. Arutyunyan N. R., Rybkovskiy D. V., Obraztsova E. A., Obraztsova E. D. Size-induced evolution of optical properties in gallium selenide thin layers. J. Lumin. 2022; 242:118546. doi: 10.1016/j.jlumin.2021.118546.
  8. Song M., An N., Zou Y. Zhang Y., Huang W., Hou H., Chen X. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection. Front. Phys. 2023; 18(5):52302. doi: 10.1007/s11467-023-1277-3.
  9. Jung C. S., Shojaei F., Park K., Oh J. Y., Im H. S., Jang D. M., Park J., Kang H. S. Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano. 2015; 9(10):9585–9593. doi: 10.1021/acsnano.5b04876.
  10. Jiang B., Hao Z., Ji Y. Hou Y., Yi R., Mao D., Gan X., Zhao J. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light Sci. Appl. 2020; 9:63. doi: 10.1038/s41377-020-0304-1.
  11. Manfredotti C., Murri R., Quirini A., Vasanelli L. A particular application of GaSe semiconductor detectors in the neutrino experiment at CERN. Nuclear Instruments and Methods. 1975; 131(3):457–462. doi: 10.1016/0029-554x(75)90434-6.
  12. Fritsche R., Wisotzki E., Islam A. B.M.O., Thissen A., Klein A., Jaegermann W., Rudolph R., Tonti D., Pettenkofer C. Electronic passivation of Si(111) by Ga–Se half-sheet termination. Appl. Phys. Lett. 2002; 80(8):1388–1390. doi: 10.1063/1.1454228.
  13. González C., Benito I., Ortega J., Jurczyszyn L., Blanco J. M., Pérez R., Flores F., Kampen T. U., Zahn D. R.T., Braun W. Selenium passivation of GaAs(001): a combined experimental and theoretical study. J. Phys. Condens. Matter. 2004; 16(13):2187–2206. doi: 10.1088/0953-8984/16/13/001.
  14. Chen G., Zhang L., Li L., Cheng F., Fu X., Li J., Pan R., Cao W., Chan A. S., Panin G. N., Wan J., Zhang H., Liu C. GaSe layered nanorods formed by liquid phase exfoliation for resistive switching memory applications. J. Alloys Compd. 2020; 823:153697. doi: 10.1016/j.jallcom.2020.153697.
  15. Chang C.-C., Zeng J.-X., Lan S.-M., Uen W.-Y., Liao S.-M., Yang T.-N., Ma W.-Y., Chang K.-J. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition. Thin Solid Films. 2013; 542:119–122. doi: 10.1016/j.tsf.2013.06.087.
  16. Mahmoud W. E., Al-Ghamdi A.A., Shirbeeny W., Al-Hazmi F.S., Khan S. A. Electrochemical growth of GaSe nanostructures and their Schottky barrier characteristics. Superlattices Microstruct. 2013; 63:162–167. doi: 10.1016/j.spmi.2013.08.025.
  17. Liu C.-W., Dai J.-J., Wu S.-K., Diep N.-Q., Huynh S.-H., Mai T.-T., Wen H.-C., Yuan C.-T., Chou W.-C., Shen J.-L., Luc H.-H. Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Sci. Rep. 2020; 10:12972. doi: 10.1038/s41598-020-69946-4.
  18. Jian S.-R., Juang J.-Y., Luo C.-W., Ku S.-A., Wu K.-H. Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd. 2012; 542:124–127. doi: 10.1016/j.jallcom.2012.07.089.
  19. Sakr G. B. Optical and electrical properties of GaSe thin films. Mater. Sci. Eng. B. 2007; 138(1):1–6. doi: 10.1016/j.mseb.2006.10.008.
  20. Ohyama M., Fujita Y. Electrical and optical properties in sputtered GaSe thin films. Surf. Coatings Technol. 2003; 169–170:620–623. doi: 10.1016/S0257-8972(03)00129-4.
  21. Kudryashov M., Mochalov L., Nezdanov A., Kornev R., Logunov A., Usanov D., Mashin A., De Filpo G., Gogova D. A novel plasma-based method for synthesis of As-Se-Te films: Impact of plasma parameters on the structure, composition, and optical properties. Superlattices Microstruct. 2019; 128:334–341. doi: 10.1016/j.spmi.2019.01.035.
  22. Mochalov L., Nezhdanov A., Logunov A., Kudryashov M., Krivenkov I., Vorotyntsev A., Gogova D., Mashin A. Optical emission of two-dimensional arsenic sulfide prepared by plasma. Superlattices Microstruct. 2018; 114:305–313. doi: 10.1016/j.spmi.2017.12.052.
  23. Usanov D., Nezhdanov A., Kudryashov M., Krivenkov I., Markelov A., Trushin V., Mochalov L., Gogova D., Mashin A. Some insights into the mechanism of photoluminescence of As-S-based films synthesized by PECVD. J. Non. Cryst. Solids. 2019; 513:120–124. doi: 10.1016/j.jnoncrysol.2019.03.015.
  24. Sazanova T. S., Mochalov L. A., Logunov A. A., Kudryashov M. A., Fukina D. G., Vshivtsev M. A., Prokhorov I. O., Yunin P. A., Smorodin K. A., Atlaskin A. A., Vorotyntsev A. V. Influence of temperature parameters on morphological characteristics of plasma deposited zinc oxide nanoparticles. Nanomaterials. 2022; 12(11):1838. doi: 10.3390/nano12111838.
  25. Minkov D., Angelov G., Nestorov R., Nezhdanov A., Usanov D., Kudryashov M., Mashin A. Optical characterization of AsxTe100-x films grown by plasma deposition based on the advanced optimizing envelope method. Materials (Basel). 2020; 13(13):2981. doi: 10.3390/ma13132981.
  26. Mochalov L., Logunov A., Kudryashov M., Prokhorov I., Sazanova T., Yunin P., Pryakhina V., Vorotuntsev I., Malyshev V., Polyakov A., Pearton S. J. Heteroepitaxial growth of Ga2O3 thin films of various phase composition by oxidation of Ga in hydrogen-oxygen plasmas. ECS J. Solid State Sci. Technol. 2021; 10(7):073002. doi: 10.1149/2162-8777/ac0e11.
  27. Mochalov L., Kudryashov M., Vshivtsev M., Prokhorov I., Kudryashova Yu., Mosyagin P., Slapovskaya E. Plasma-enhanced chemical vapor deposition of GaxS1-x thin films: structural and optical properties. Opt. Quantum Electron. 2023; 55(10):909. doi: 10.1007/s11082-023-05165-1.
  28. Kudryashov M. A., Mochalov L. A., Prokhorov I. O., Vshivtsev M. A., Kudryashova Yu.P., Malyshev V. M., Slapovskaya E. A. Plasma-enhanced chemical vapor deposition of thin GaS films on various types of substrates. High Energy Chem. 2023; 57(6):532–536. doi: 10.1134/S0018143923060097
  29. Mochalov L., Logunov A., Prokhorov I., Vshivtsev M., Kudryashov M., Kudryashova Yu., Malyshev V., Spivak Y., Greshnyakov E., Knyazev A., Fukina D., Yunin P., Moshnikov V. Variety of ZnO nanostructured materials prepared by PECVD. Opt. Quantum Electron. 2022; 54(10):646. doi: 10.1007/s11082-022-03979-z.
  30. Siqueira M. C., Machado K. D., Serbena J. P. M., Hümmelgen I. A., Stolf S. F., de Azevedo C. G. G., da Silva J. H. D. Electronic and optical properties of amorphous GaSe thin films. J. Mater. Sci. Mater. Electron. 2016; 27(7):7379–7383. doi: 10.1007/s10854-016-4711-2.
  31. Rybkovskiy D. V., Arutyunyan N. R., Orekhov A. S., Gromchenko I. A., Vorobiev I. V., Osadchy A. V., Salaev E.Yu., Baykara T. K., Allakhverdiev K. R., Obraztsova E. D. Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions. Phys. Rev. B. 2011; 84(8):085314. doi: 10.1103/PhysRevB.84.085314.
  32. Bassou A., Rajira A., El-Hattab M., El Haskouri J., Murcia-Mascaros S., Almaggoussi A., Abounadi A. Structural and optical properties of a layered ε-GaSe thin film under elastic deformation from flexible PET substrate. Micro and Nanostructures. 2022; 163:107152. doi: 10.1016/j.spmi.2022.107152.
  33. Thamilselvan M., Premnazeer K., Mangalaraj D., Narayandass S., Kim K., Yi J. Structure, optical and DC conduction mechanism of amorphous GaSe thin films. Mater. Sci. Semicond. Process. 2004; 7(1–2):69–75. doi: 10.1016/j.mssp.2004.05.004.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic view of the plasma-chemical setup for synthesis of GaSe thin films

Download (114KB)
3. Fig. 2. XRD patterns of gallium selenide films deposited at different substrate temperatures

Download (103KB)
4. Fig. 3. SEM images of gallium selenide films deposited at different substrate temperatures: 150 °C (a), 250 °C (b) and 350 °C (c) (Scale bar is 200 nm)

Download (512KB)
5. Fig. 4. AFM images (3×3μm2) of gallium selenide films deposited at different substrate temperatures: 150 °C (a), 250 °C (b) and 350 °C (c).

Download (294KB)
6. Fig. 5. Transmission spectra of gallium selenide films deposited at different substrate temperatures

Download (93KB)
7. Fig. 6. Absorption spectra in αhν1/2 (а) and αhν2 (b) coordinates vs. hν for GaSe films deposited at different substrate temperatures

Download (149KB)

Copyright (c) 2024 Kudryashov M.A., Mochalov L.A., Kudryashova Y.P., Slapovskaya E.A., Vshivtsev M.A., Kriukov R.N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies