Procedure for determination of the electrical and acoustic properties of frozen soils during the defrosting cycle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper presents an original optical method for studying the specifications of frozen soil samples. The method for determination of the moisture quantitative composition in the frozen geological rocks is based on the measurement principles for the typical spectra of attenuated total reflection (ATR) using a dual-frequency modulation method for recording the optical signal emitted by the InGaAsSb-based semiconductor heterostructures. Further development of this method will make it possible to identify correlations between the reflected radiation parameters and specifications of the electrical and acoustic properties of frozen soils during the defrosting cycle.

Full Text

Restricted Access

About the authors

D. V. Grigoriev

Lomonosov Moscow State University

Author for correspondence.
Email: photonics@technosphera.ru

Faculty of Geology, Department of Geocryology

Russian Federation, Moscow

A. V. Koshurnikov

Lomonosov Moscow State University

Email: photonics@technosphera.ru

Faculty of Geology, Department of Geocryology

Russian Federation, Moscow

References

  1. Shuna Feng, Junru Chen, Scott B. Jones, Gerald Flerchinger, Miles Dyck, Vilim Filipovic, You Hu, Bingcheng Si, Jialong Lv, Qingbai Wu, Hailong He. Miscellaneous methods for determination of unfrozen water content in frozen soils. Journal of Hydrology. 2024; 631: 130802. doi: 10.1016/j.jhydrol.2024.130802.
  2. Zhang Ji-wei, Murton Julian; Liu Shu-jie; Zhang Song; Wang Lei; Kong Ling-hui et al. Sensitivity and regression analysis of acoustic parameters for determining physical properties of frozen fine sand with ultrasonic test. University of Sussex. Journal contribution. 2020. URL: https://hdl.handle.net/10779/uos.23307314.v1.
  3. Koshurnikov A. V., Kotov P. I., Agapkin I. A. Influence of salinity on the acoustic and electrical properties of frozen soils. Bulletin of the Moscow University. Series 4. Geology. 2019;(6):99–106. Кошурников А. В., Котов П. И., Агапкин И. А. Влияние засоленности на акустические и электрические свойства мерзлых грунтов. Вестник московского университета. Серия 4. Геология. 2019;(6):99–106.
  4. Liu Jianpeng & Yang, Ping & Yang, Zhaohui. Electrical properties of frozen saline clay and their relationship with unfrozen water content. Cold Regions Science and Technology. 2020;178: 103127. doi: 10.1016/j.coldregions.2020.103127.
  5. Motenko R. G., Davletova R. R., Grechishcheva E. S., Alekseev A. G. Experimental assessment of the peat formation influence on the water phase composition in the frozen soils with various granulometric compositions. Bulletin of the moscow university. Series 4. Geology. 2024;1(1):116–122. Мотенко Р. Г., Давлетова Р. Р., Гречищева Э. С., Алексеев А. Г. Экспериментальная оценка влияния заторфованности на фазовый состав воды в мерзлых грунтах различного гранулометрического состава. Вестник московского университета. Серия 4. Геология. 2024;1(1):116–122.
  6. Harrick N. J., Carlson A. I. Internal Reflection Spectroscopy: Validity of Effective Thickness Equations. Applied Optics. 1971;10(1):19. doi: 10.1364/ao.10.000019.
  7. Tsytovich N. A. Frozen soil mechanics. – Moscow: Higher School. 1973. 448 p. Цытович Н. А. Механика мерзлых грунтов. – М.: Высшая. Школа. 1973. 448 с.
  8. Yakovlev Yu.P., Baranov A. N., Imenkov A. N., Sherstnev V. V. and Mikhailova M. P. Optoelectronic LED-photodiode Pairs for Moisture and Gas sensors in the spectral range 1.8–4.8 μm. Proc. SPIE. 1991;1510:128 p.
  9. Khmelevskoi V. K., Kostitsyn V. I. Fundamentals of geophysical methods. – Perm: Perm University Publishing House. 2010. 400 p. Хмелевской В. К., Костицын В. И. Основы геофизических методов. – Пермь: Изд-во Пермского ун-та. 2010. 400 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Moisture meter for dispersed materials: a) time diagram of emitted and recorded LED power; b) emitter design

Download (142KB)
3. Fig. 2. Optical scheme of the experiment: 1 – LED emitter; 2 – receiver (FD); 3 – object under study

Download (69KB)
4. Fig. 3. Drawings of the installation used: a) general view of the installation; b) horizontal sectional view: 1 – thermal insulation; 2 – soil container; 3 – test soil; 4 – piezodisc 30x4 GT205-01 in the GT200UB housing; 5 – ATR element; 6 – ray path in the ATR element; 7 – thermocouple ХК(L) K4; 8 – electrodes (AB – transmitting electrode; MN – receiving electrode); 9 – resistor C5–43; 10 – thermocouples ХК(L) K5; 11 – LED emitter; 12 – photodiode (PD)

Download (232KB)

Copyright (c) 2024 Grigoriev D.V., Koshurnikov A.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies