Application of residual deformation compensation methods in direct laser deposition of large-sized products

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Direct laser deposition is widely used in high-tech industries due to the possibility of creating complex parts, which manufacturing is impossible using traditional production methods. However, the production process is complicating by the formation of residual stresses and deformations in the part, which negatively affect its quality. The field of distribution of stresses and deformations in the part is associated with its geometry. This article presents the main compensation methods of part distortion and describes the types of typical part deformations for DLD. The deformation compensation results are presented on example of four different parts made of stainless steel grade 12Ch18Ni10Ti (analogue AISI 304) and heat-resistant alloy VZh159.

Full Text

Restricted Access

About the authors

А. Yu. Kovchik

Saint Petersburg State Marine Technical University (SMTU)

Author for correspondence.
Email: Akovchik@yandex.ru
ORCID iD: 0000-0001-5494-2405

Institute of Laser and Welding Technologies

Russian Federation, St. Petersburg

A. М. Vildanov

Saint Petersburg State Marine Technical University (SMTU)

Email: wildam92@mail.ru
ORCID iD: 0000-0002-7319-0605

Institute of Laser and Welding Technologies

Russian Federation, St. Petersburg

N. R. Alymov

Saint Petersburg State Marine Technical University (SMTU)

Email: sir.alymoff@yandex.ru
ORCID iD: 0000-0003-1066-1446

Institute of Laser and Welding Technologies

Russian Federation, St. Petersburg

S. Yu. Ivanov

Saint Petersburg State Marine Technical University (SMTU)

Email: Akovchik@yandex.ru
ORCID iD: 0000-0002-0077-2313

Institute of Laser and Welding Technologies

Russian Federation, St. Petersburg

R. V. Mendagaliyev

Saint Petersburg State Marine Technical University (SMTU)

Email: Akovchik@yandex.ru
ORCID iD: 0000-0003-4358-1995

Institute of Laser and Welding Technologies

Russian Federation, St. Petersburg

References

  1. Liu S., Shin Y. C. Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design. 2019; 164: 107552.
  2. Blakey-Milner B., Gradl P., Snedden G., Brooks M. et al. Metal additive manufacturing in aerospace: A review. https://doi.org/10.1016/j.matdes.2021.110008.
  3. Li C., Liu Z., Fang X., Guo Y. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018; 71:348–353.
  4. Bastola N.; Jahan M. P.; Rangasamy N.; Rakurty C. S. A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention. Micromachines. 2023; 14: 1480. https://doi.org/10.3390/mi14071480.
  5. Gatovskij K. M., Karhin V. A. Teoriya svarochnyh deformacij i napryazhenij. Izd. LKI: 1981; 12–13. Гатовский К. М., Кархин В. А. Теория сварочных деформаций и напряжений. Изд. ЛКИ: 1981; 12–13.
  6. Kovchik A., Babkin K., Vildanov A. Research of deformation compensation method in laser metal deposition process of 12Х18Н10Тstainless steel product. J. Phys.: Conf. Ser. 2077 012010
  7. Babkin K. D., Zemlyakov E. V., Ivanov S. Yu. Distortion prediction and compensation in direct laser deposition of large axisymmetric Ti-6Al-4V part. Procedia CIRP. 2020; 94:357–361.
  8. Vastola G., Sin W. J., C.-N. Sun N. Design guidelines for suppressing distortion and buckling in metallic thin-wall structures built by powder-bed fusion additive manufacturing. Sridhar. Materials & Design. 2022; 215.
  9. Zemlyakov E. V., Alymov N. R., Vildanov A. M., Babkin K. D., Ivanov S. Yu., Kislov N. G., Tarasov D. S., Myatlev A. S., Ivanovsky A. A. Application of Laser and Additive Technologies in the Manufacturing of Advanced Industrial Gas Turbine Units. Photonics Russia. 2022;16(6):436–452. doi: 10.22184/1993-7296.FRos.2022.16.6.436.452.
  10. Deng D., Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science. 2006; 37:269–277.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DLD production cycle

Download (368KB)
3. Fig. 2. A segment of a thin-walled shell 3 mm thick made of VT6 (analogue Ti6Al4VELi) alloy а) on a rigidly fixed substrate; b) fixed in the center; с) with an increased compensation layer

Download (2MB)
4. Fig. 3. Comparison of the calculated model with the product model: a) before geometry changing; b) after geometry changing

Download (11MB)
5. Fig. 4. Gas collector parts for the GTE-65.1 gas turbine unit [9]: 1 – Inner shell, 2 – Casing frame, 3 – Inlet ring, 4 – Outer shell

Download (412KB)
6. Fig.5. Direct laser deposition complex ILIST-L

Download (26MB)
7. Fig. 6. Result of modeling the stress-strain state of the outer shell of the gas collector with the addition stringers [9] of: a) 2mm; b) 4mm

Download (845KB)
8. Fig. 7. Result of modeling the stress-strain state of the inner shell

Download (298KB)
9. Fig. 8. Frame for heat treatment of the outer shell (a) and its position in the part (b)

Download (1MB)
10. Fig. 9. Result of control compensated frame geometry

Download (1MB)
11. Fig. 10. Result of control compensated ring geometry

Download (6MB)
12. Fig. 11. Result of inner shell geometry control

Download (2MB)
13. Fig. 12. The geometry control of the outer shell: а) after production; b) after heat treatment; c) after removal of stringers; d) after separation from the substrate

Download (5MB)

Copyright (c) 2024 Kovchik А.Y., Vildanov A.М., Alymov N.R., Ivanov S.Y., Mendagaliyev R.V.