Application of residual deformation compensation methods in direct laser deposition of large-sized products
- Authors: Kovchik А.Y.1, Vildanov A.М.1, Alymov N.R.1, Ivanov S.Y.1, Mendagaliyev R.V.1
-
Affiliations:
- Saint Petersburg State Marine Technical University (SMTU)
- Issue: Vol 18, No 5 (2024)
- Pages: 406-418
- Section: Additive Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/642228
- DOI: https://doi.org/10.22184/1993-7296.FROS.2024.18.5.406.418
- ID: 642228
Cite item
Abstract
Direct laser deposition is widely used in high-tech industries due to the possibility of creating complex parts, which manufacturing is impossible using traditional production methods. However, the production process is complicating by the formation of residual stresses and deformations in the part, which negatively affect its quality. The field of distribution of stresses and deformations in the part is associated with its geometry. This article presents the main compensation methods of part distortion and describes the types of typical part deformations for DLD. The deformation compensation results are presented on example of four different parts made of stainless steel grade 12Ch18Ni10Ti (analogue AISI 304) and heat-resistant alloy VZh159.
Full Text

About the authors
А. Yu. Kovchik
Saint Petersburg State Marine Technical University (SMTU)
Author for correspondence.
Email: Akovchik@yandex.ru
ORCID iD: 0000-0001-5494-2405
Institute of Laser and Welding Technologies
Russian Federation, St. PetersburgA. М. Vildanov
Saint Petersburg State Marine Technical University (SMTU)
Email: wildam92@mail.ru
ORCID iD: 0000-0002-7319-0605
Institute of Laser and Welding Technologies
Russian Federation, St. PetersburgN. R. Alymov
Saint Petersburg State Marine Technical University (SMTU)
Email: sir.alymoff@yandex.ru
ORCID iD: 0000-0003-1066-1446
Institute of Laser and Welding Technologies
Russian Federation, St. PetersburgS. Yu. Ivanov
Saint Petersburg State Marine Technical University (SMTU)
Email: Akovchik@yandex.ru
ORCID iD: 0000-0002-0077-2313
Institute of Laser and Welding Technologies
Russian Federation, St. PetersburgR. V. Mendagaliyev
Saint Petersburg State Marine Technical University (SMTU)
Email: Akovchik@yandex.ru
ORCID iD: 0000-0003-4358-1995
Institute of Laser and Welding Technologies
Russian Federation, St. PetersburgReferences
- Liu S., Shin Y. C. Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design. 2019; 164: 107552.
- Blakey-Milner B., Gradl P., Snedden G., Brooks M. et al. Metal additive manufacturing in aerospace: A review. https://doi.org/10.1016/j.matdes.2021.110008.
- Li C., Liu Z., Fang X., Guo Y. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018; 71:348–353.
- Bastola N.; Jahan M. P.; Rangasamy N.; Rakurty C. S. A Review of the Residual Stress Generation in Metal Additive Manufacturing: Analysis of Cause, Measurement, Effects, and Prevention. Micromachines. 2023; 14: 1480. https://doi.org/10.3390/mi14071480.
- Gatovskij K. M., Karhin V. A. Teoriya svarochnyh deformacij i napryazhenij. Izd. LKI: 1981; 12–13. Гатовский К. М., Кархин В. А. Теория сварочных деформаций и напряжений. Изд. ЛКИ: 1981; 12–13.
- Kovchik A., Babkin K., Vildanov A. Research of deformation compensation method in laser metal deposition process of 12Х18Н10Тstainless steel product. J. Phys.: Conf. Ser. 2077 012010
- Babkin K. D., Zemlyakov E. V., Ivanov S. Yu. Distortion prediction and compensation in direct laser deposition of large axisymmetric Ti-6Al-4V part. Procedia CIRP. 2020; 94:357–361.
- Vastola G., Sin W. J., C.-N. Sun N. Design guidelines for suppressing distortion and buckling in metallic thin-wall structures built by powder-bed fusion additive manufacturing. Sridhar. Materials & Design. 2022; 215.
- Zemlyakov E. V., Alymov N. R., Vildanov A. M., Babkin K. D., Ivanov S. Yu., Kislov N. G., Tarasov D. S., Myatlev A. S., Ivanovsky A. A. Application of Laser and Additive Technologies in the Manufacturing of Advanced Industrial Gas Turbine Units. Photonics Russia. 2022;16(6):436–452. doi: 10.22184/1993-7296.FRos.2022.16.6.436.452.
- Deng D., Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science. 2006; 37:269–277.
Supplementary files
