Evaluation of Residual Deformations of a Welded Joint Generated by Various Welding Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper presents the comparison results of laser and arc welding methods. The modes for laser welding, hybrid laser-arc welding and laser welding with filler wire for the St3 plates with the thickness of 10 mm were developed. Three test joints were welded by each welding method using the developed modes. The metallographic studies were conducted demonstrating stable formation of the welded joint and absence of internal defects. The residual deformations were assessed for the following types of welding: laser welding, hybrid laser-arc welding, laser welding with filler wire, single-sided and double-sided manual arc welding, single-sided and double-sided mechanized welding in the active gases and mixtures. The test samples for each welding type were analyzed in terms of the level of residual deformations after welding by comparing geometric dimensions and using the 3D scanning procedure. A comparative technical and economic analysis of welding methods was performed.

Full Text

Restricted Access

About the authors

Mikhail V. Kuznetsov

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: kuznetsov_mich@mail.ru
ORCID iD: 0000-0002-9981-1078

Ph.D. in technical sciences, Head of the Research Laboratory “Laser and Additive Technologies”, Director of the Russian-German Center for Laser Technologies, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Maksim V. Larin

Peter the Great St. Petersburg Polytechnic University

Email: kuznetsov_mich@mail.ru
ORCID iD: 0000-0002-6382-7561

engineer of the research laboratory “Laser and Additive Technologies”, junior researcher of the Russian-German Center for Laser Technologies, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Daria A. Kuznetsova

Peter the Great St. Petersburg Polytechnic University

Email: kuznetsov_mich@mail.ru
ORCID iD: 0009-0003-3938-5710

engineer of the research laboratory “Laser and Additive Technologies”, junior researcher of the Russian-German Center for Laser Technologies, Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

Anatoly A. Popovich

Peter the Great St. Petersburg Polytechnic University

Email: kuznetsov_mich@mail.ru
ORCID iD: 0000-0002-5974-6654

Doctor of Technical Sciences, professor, director of the Institute of Mechanical Engineering, Materials and Transport

Russian Federation, Saint-Petersburg

References

  1. Lopota A., Afanas’eva A., Velichko O. Tekhniko-ekonomicheskie aspekty vnedreniya tekhnologii gibridnoj lazerno-dugovoj svarki v otechestvennoj promyshlennosti. Sbornik 6-j mezhdunarodnoj konferencii «Luchevye tekhnologii i primenenie lazerov». – Sankt-Peterburg. 2010; 423–429. Лопота А., Афанасьева А., Величко О. Технико-экономические аспекты внедрения технологии гибридной лазерно-дуговой сварки в отечественной промышленности. Сборник 6-й международной конференции «Лучевые технологии и применение лазеров». – Санкт-Петербург. 2010; 423–429.
  2. Hu X. et al. Influence of lumping passes on calculation accuracy and efficiency of welding residual stress of thick-plate butt joint in boiling water reactor. Engineering Structures. 2020; 222: 111136.
  3. Anufriev D. A., Procenko V. G., Larin M. V., Kuznecov M. V., Kuryncev S. V. Lazernaya svarka krivolinejnyh shvov zagotovok iz stali 03H17N14M3 tolshchinoj 10 mm. Svarka i Diagnostika. 2024;1: 33–36. Ануфриев Д. А., Проценко В. Г., Ларин М. В., Кузнецов М. В., Курынцев С. В. Лазерная сварка криволинейных швов заготовок из стали 03Х17Н14М3 толщиной 10 мм. Сварка и Диагностика. 2024;1: 33–36.
  4. Anufriev D. A., Procenko V. G., Larin M. V., Kuznecov M. V., PevznerYA. B., Grinin O. I., Kuryncev S. V. Vysokoskorostnaya lazernaya svarka stali 316L tolshchinoj 10 mm. Svarka i Diagnostika. 2023;4:39–44. Ануфриев Д. А., Проценко В. Г., Ларин М. В., Кузнецов М. В., Певзнер Я. Б., Гринин О. И., Курынцев С. В. Высокоскоростная лазерная сварка стали 316L толщиной 10 мм. Сварка и Диагностика. 2023;4:39–44.
  5. Bunaziv I., Ren X., Olden V. A comparative study of laser-arc hybrid welding with arc welding for fabrication of offshore substructures. Journal of Physics: Conference Series. – IOP Publishing. 2023; 2626(1):012033.
  6. Peli S., Bonaldo F., Riva M. Welding of 20 mm thick EH40 steel by means of a single-pass hybrid laser-arc welding technique. Procedia CIRP. 2024;124: 394–398.
  7. Gook S. et al. Joining 30 mm thick shipbuilding steel plates EH36 using a process combination of hybrid laser arc welding and submerged arc welding. Journal of Manufacturing and Materials Processing. 2022; 6(4): 84.
  8. Li J. et al. Analysis and improvement of laser wire filling welding process stability with beam wobble. Optics & Laser Technology. 2021; 134: 106594.
  9. Voropaev A. A., Protsenko V. G., Anufriyev D. A., Kuznetsov M. V., Mukhin A. A., Sviridenko M. N., Kuryntsev S. V. Influence of Laser BeamWobbling Parameters on Microstructure and Properties of 316L Stainless Steel Multi Passed Repaired Parts. Materials. 2022;15:722. doi: 10.3390/ma15030722.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. External appearance of the RPS HLAW

Download (571KB)
3. Fig. 2. Results of beam quality measurements at the output of the 100 / 500 mm optical head (optical cable with the length of 15 m). The measurements were performed using the Primes device (the measured parameter BPP = 4.1 mm ∙ mrad)

Download (478KB)
4. Fig. 3. Geometric parameters of the cut for MMA and MSW: a) – for single-sided welding; b) – for double-sided welding

Download (71KB)
5. Fig. 4. Geometric parameters of the cut: a) – for LW and HLAW; b) – for LBW-W

Download (42KB)
6. Fig. 5. Drawing of the plate for welding

Download (62KB)
7. Fig. 6. Plates assembled for welding in the tooling

Download (743KB)
8. Fig. 7. Sizing scheme for residual deformation analysis

Download (108KB)
9. Fig. 8. End view of the welded joints obtained by: a) – MMA1; b) – MMA2; c) – MSW1; d) – MSW2

Download (213KB)
10. Fig. 9. End view of the welded joints on the welded samples obtained by: a) – LW; b) – HLAW; c) – LBW-W

Download (150KB)
11. Fig. 10. Macrosections of the cross-section of welded samples (50x): a) – LW; b) – HLAW; c) – LBW-W; d) – MMA1; e) – MMA2; f) – MSW1; g) – MSW2

Download (874KB)
12. Fig. 11. Microstructure of the base metal: a) 100x magnification; b) 1000x magnification

Download (240KB)
13. Fig. 12. Microstructure of the welded joints: a) – LW; b) – HLAW; c) – LBW-W; d) – MMA1; e) – MMA2; f) – MSW1; g) – MSW2 (100x)

Download (952KB)
14. Fig. 13. Deviation maps of the welded samples obtained by the following methods: a) – LW; b) – HLAW; c) – LBW-W

Download (52KB)
15. Fig. 14. Scheme of size comparison during the 3D scanning procedure

Download (27KB)
16. Fig. 15. Comparison chart for welding methods

Download (1023KB)

Copyright (c) 2025 Kuznetsov M.V., Larin M.V., Kuznetsova D.A., Popovich A.A.