Absolute error estimation of the RACE atmospheric correction module based on space images from the Sentinel-2 satellites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article discusses two atmospheric correction modules: RACE (A Robust Atmospheric Correction Procedure) and Sen2Cor of the Earth observation satellites “Sentinel-2” (ESA) (image processing level: L2A) and their quantitative comparison. The RACE module processed 22 Sentinel-2 scenes with the L1C processing level, various shooting conditions and a wide variety of objects. The average absolute error for all scenes in the derived albedo ranges was estimated for each of the 22 scenes for the B2, B3, B4 and B8 Sentinel-2 spectral channels. As a result of the RACE absolute error estimation for the spectral channels considered, it was shown that the RACE module was comparable in the albedo determination accuracy at the Earth’s level to the Sen2Cor module.

Full Text

Restricted Access

About the authors

Petr A. Zashchepka

Peleng JSC; Belarusian National Technical University

Author for correspondence.
Email: 1zashchepko@mail.ru
ORCID iD: 0009-0004-1901-2818

2nd category research engineer, Peleng JSC, master’s student, Belarusian National Technical University

Belarus, Minsk; Minsk

Valiantsina A. Zaitsava

Peleng JSC

Email: zaitseva53@inbox.ru

leading research engineer, PhD in Physics and Mathematics

Belarus, Minsk

Rostsislau V. Fiodartsau

Belarusian National Technical University

Email: feodrw@gmail.com

PhD in Technical Sciences, head of the Department of Process Equipment, Associate Professor

Belarus, Minsk

References

  1. Stamnes K., Thomas E. G., Stamnes J. J. Radiative Transfer in the Atmosphere and Ocean. – Cambridge University Press: Cambridge, UK, 2017; 512p. doi: 10.1017/9781316148549.
  2. Earth remote sensing data from space. Radiometric correction of Earth remote sensing data from space obtained from optical-electronic observation spacecraft in the visible and near-infrared range. Requirements for algorithms: GOST R 59759-2021. – Introduction. 05/01/2022. – Moscow: Russian Institute of Standardization, 2021. 24 p. Данные дистанционного зондирования Земли из космоса. Радиометрическая коррекция данных дистанционного зондирования Земли из космоса, получаемых с космических аппаратов оптико-электронного наблюдения в видимом и ближнем инфракрасном диапазоне. Требование к алгоритмам: ГОСТ Р 59759-2021. – Введ. 01.05.2022. – Москва: Российский институт стандартизации, 2021. 24 с.
  3. Remote sensing of the Earth from space. Earth remote sensing data from space. Types of atmospheric correction: GOST R 70027-2022. – Introduction. 09/01/2022. – Moscow: Russian Institute of Standardization, 2022. 12 p. Дистанционное зондирование Земли из космоса. Данные дистанционного зондирования Земли из космоса. Виды атмосферной коррекции: ГОСТ Р 70027-2022. – Введ. 01.09.2022. – Москва: Российский институт стандартизации, 2022. 12 с.
  4. Terez E. I., Terez G. A. i Lagunova M. I. Uchet releevskogo rasseyaniya zemnoj atmosfery pri fotometricheskih iskazheniyah. Uchenye zapiski Tavricheskogo nacional’nogo universitet imeni V. I. Vernadskogo. Seriya: fizika. – Simferopol’. 2008; 21: 117–124. Терез Э. И., Терез Г. А. и Лагунова М. И. Учет релеевского рассеяния земной атмосферы при фотометрических искажениях. Ученые записки Таврического национального университет имени В. И. Вернадского. Серия: физика. – Симферополь. 2008; 21: 117–124.
  5. Global reference atmosphere for altitudes from 0 to 120 km for aerospace practice. Parameters: GOST R 53460-2009. Introduction. 07/01/2010. – Moscow: Standartinform, 2009. 254 p. Глобальная справочная атмосфера для высот от 0 до 120 км для аэрокосмической практики. Параметры: ГОСТ Р 53460-2009. Введ. 01.07.2010. – Москва: Стандартинформ, 2009. 254 с.
  6. Katsev I. L., Prikhach A. S., Zege E. P., Kokhanovsky A. A. A robust atmospheric correction procedure for determination of spectral reflectance of terrestrial surfaces from satellite spectral measurements. Remote Sens. 2021;13 (9): 1831. Basel. doi: 10.3390/rs13091831.
  7. Copernicus Browser. URL: https://browser.dataspace.copernicus.eu/. [27.02.2025].
  8. Main-Knorn M., Pflug B., Louis J. M.B., Debaecker V., Müller-Wilm U., Gascon F. Sen2Cor for Sentinel-2. In Proceedings Volume10427, Image and Signal Processing for Remote Sensing XXIII; SPIE: Warsaw. Poland. 2017; 1042704.doi: 10.1117/12.2278218.
  9. Tynes H., Kattawar G. W., Zege E. P., Katsev I. L., Prikhach A. S., Chaikovskaya L. I. Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations. Appl. Opt. 2001;40:400–412. doi: 10.1364/AO.40.000400.
  10. Barton J. S., Casey K., Chien J. Y.L., Digirolamo N. E., Klein A. G., Powell H. W., Tait A. B., Hall D. K., Riggs G. A., Solomonson V. V. Algorithm Theoretical Basis Document for the MODIS Snow and Sea Ice Mapping Algorithms. – Madison: Univ. Wisconsin, 2001. 45 p.
  11. Stepanova E. A., Skulkina N. A., Volegov A. S. / ed. Stepanova E. A. Fundamentals of measurement results processing – Yekaterinburg: Ural Publishing House. University. 2014. 95 p. Степанова Е. А., Скулкина Н. А., Волегов А. С. / под ред. Степановой Е. А. Основы обработки результатов измерения – Екатеринбург: Изд-во Урал. Ун-та. 2014. 95 с.
  12. The state system of ensuring the uniformity of measurements. The measurements are direct and multiple. Methods of processing measurement results. The main provision: GOST R 8.736-2011. – Introduction. 01.01.2013. – Moscow: Standartinform,2019. – 19 p. Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основное положение: ГОСТ Р 8.736-2011. – Введ. 01.01.2013. – Москва: Стандартинформ, 2019. – 19 с.
  13. Zorich V. A. Mathematical analysis. Part I. – It’s decreasing. 10th, SPANISH. – M.: ICNZO, 2019., ISBN 978-5-4439-4029-8, ISBN 978-5-4439-4030-4 (Part I). Зорич В. А. Математический анализ. Часть I. – Изд. 10-е, испр. – М.: МЦНЦО, 2019. ISBN 978-5-4439-4029-8, ISBN 978-5-4439-4030-4 (часть I).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo (September 11, 2022) with a fragment of the Earth’s surface for the La Crau scene: a – processing level L1C; b – processing level L2A; c – processing level RACE

Download (539KB)
3. Fig. 2. Albedo distribution histograms for the La Crau scene: a – channel B2, b – channel B3, c – channel B4, d – channel B8

Download (402KB)
4. Fig. 3. Dependence of the albedo absolute error distribution on the reference albedo value for the La Crau scene: a – channel B2, b – channel B3, c – channel B4, d – channel B8

Download (435KB)
5. Fig. 4. Scatter charts of the absolute RACE accuracies by ranges for the La Crau scene: a – channel B2, b – channel B3, c – channel B4, d – channel B8

Download (355KB)
6. Fig. 5. Photo (January 12, 2024) with a fragment of the Earth’s surface for the Antarctica scene: a – processing level L1C; b – processing level L2A; c – processing level RACE

Download (227KB)
7. Fig. 6. Scatter charts of the RACE accuracy relative to Sen2Cor by ranges over all scenes: a – channel B2, b – channel B3, c – channel B4, d – channel B8

Download (380KB)

Copyright (c) 2025 Zashchepka P.A., Zaitsava V.A., Fiodartsau R.V.