Single-pulse laser-induced Al transfer onto the Si wafer for ohmic contact development
- Authors: Kovalev M.S.1, Stsepuro N.G.1,2, Ulturgasheva E.V.1,2, Kudryashov S.I.1,2
-
Affiliations:
- Lebedev Physical Institute of the Russian Academy of Sciences
- Bauman Moscow State Technical University (National Research University)
- Issue: Vol 19, No 6 (2025)
- Pages: 466-477
- Section: Technologies & Technology Equipment
- URL: https://journals.eco-vector.com/1993-7296/article/view/694209
- DOI: https://doi.org/10.22184/1993-7296.FRos.2025.19.6.466.477
- ID: 694209
Cite item
Abstract
The article examines the aluminum contacts on silicon wafers developed by the laser-induced forward transfer. It is determined that a single-pulse regime with an energy density of 15 J/cm2 leads to an aluminum concentration of 18.6% and a minimum contact resistance of 439 ± 4 Ohm. The method simplifies the contact generation process and eliminates the need for complex cleaning, making it promising for future silicon-based electronic applications.
Full Text
About the authors
M. S. Kovalev
Lebedev Physical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: kovalevms@lebedev.ru
ORCID iD: 0000-0001-5074-0718
Cand.of Sc.(Tech.), Senior Researcher
Russian Federation, MoscowN. G. Stsepuro
Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)
Email: kovalevms@lebedev.ru
ORCID iD: 0000-0002-8383-7396
Junior Research Fellow, LPI, Senior Lecturer, Bauman Moscow State Technical University (National Research University (Bauman Moscow State Technical University)
Russian Federation, Moscow; MoscowE. V. Ulturgasheva
Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)
Email: kovalevms@lebedev.ru
Junior Research Fellow, LPI, Junior Research Fellow, Bauman Moscow State Technical University
Russian Federation, Moscow; MoscowS. I. Kudryashov
Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)
Email: kovalevms@lebedev.ru
ORCID iD: 0000-0001-6657-2739
Dr. of Sc.(Phys.&Math.), Leading Researcher at the LPI, Leading Researcher at the Bauman Moscow State Technical University
Russian Federation, Moscow; MoscowReferences
- Serra P., Piqué, A. Laser-Induced Forward Transfer: Fundamentals and Applications. Advanced Materials Technologies. 2018; 4(1): 1800099. doi: 10.1002/admt.201800099.
- Morales M., Munoz-Martin D., Marquez A., Lauzurica S., Molpeceres C. Advances in Laser Materials Processing in Laser-Induced Forward Transfer. Techniques and Applications. 2018; 339–379. doi: 10.1016/B978-0-08-101252-9.00013-3.
- Kovalev M. S., Podlesnykh I. M., Pevchikh K. E., Kudryashov S. I. Near-Infrared Planar Photonics Based on Hyperdoped Silicon: Prospect. Photonics Russia. 2024; 2: 136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151. Ковалев М. С., Подлесных И. М., Певчих К. Э., Кудряшов С. И. Планарная фотоника ближнего инфракрасного диапазона на основе сверхлегированного кремния: перспективы. Фотоника. 2024; 2: 136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151.
- Manickam S., Wang, J., Huang, C. Laser–material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2013; 227(11): 1714–1723. doi: 10.1177/0954405413492322.
- Nastulyavichus A. А., Kudryashov S. I., Smirnov N. А. et al. Selection of regimes for one-step high-throughput laser printing of silver conducting lines on silicon by forward laser transfer. Journal of optical technology. 2024; 91 (2): 99–111. (In Russ.). doi: 10.17586/1023-5086-2024-91-02-99-111. Настулявичус А. А., Кудряшов С. И., Смирнов Н. А. [и др.] Выбор режимов одностадийной высокопроизводительной печати серебряных проводящих дорожек на поверхности кремния методом лазерного переноса. Оптический журнал. 2024; 91 (2): 99–111. doi: 10.17586/1023-5086-2024-91-02-99-111.
- Zacharatos F., Karvounis P., Theodorakos I., Hatziapostolou A., Zergioti I. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes. Materials (Basel). 2018; 11(6):1036. doi: 10.3390/ma11061036.
- Mehrpouya M., Emamian S. Recent advantages in laser fabrication of micro-channel heat exchangers. Materialwissenschaft Und Werkstofftechnik. 2017; 48(3–4): 205–209. doi: 10.1002/mawe.201600759.
- Tzou A.-J., Hsieh D.-H., Chen S.-H., Li Z.-Y., Chang C.-Y., Kuo H.-C. Non-thermal alloyed ohmic contact process of GaN-based HEMTs by pulsed laser annealing. Semiconductor Science and Technology. 2016; 31(5): 055003. doi: 10.1088/0268-1242/31/5/055003.
- S. Rascunà, P. Badalà, C. Tringali, C. Bongiorno, E. Smecca, A. Alberti, S. Di Franco, F. Giannazzo, G. Greco, F. Roccaforte, M. Saggio. Morphological and electrical properties of Nickel based Ohmic contacts formed by laser annealing process on n-type 4H-SiC. Materials Science in Semiconductor Processing. 2019, 97: 62–66. doi: 10.1016/j.mssp.2019.02.031.
- Hou M., Xie G., Sheng K. Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing. Chinese Physics B. 2019; 28(3): 037302. doi: 10.1088/1674-1056/28/3/037302.
- Wang L., Carlson D., Gupta M. Silicon solar cells based on all-laser-transferred contacts. Progress in Photovoltaics: Research and Applications. 2015; 23: 61–68. doi: 10.1002/pip.2395.
- Raghavan A. S., Palmer T. A., Kragh-Buetow K. C., Domask A. C., Reutzel E. W., Mohney S. E., DebRoy T. Employing microsecond pulses to form laser-fired contacts in photovoltaic devices. Progress in photovoltaics. 2015; 23 (8): 1025–1036. DOI:0.1002/pip.2523.
- Raghavan A., Palmer T. A., DebRoy T. Evolution of laser-fired aluminum-silicon contact geometry in photovoltaic devices. Journal of Applied Physics. 2012; 111(2): 024903. doi: 10.1063/1.3675442.
- Schneider J., Sarikov A., Klein J., Muske M., Sieber I., Quinn T., Reehal H. S., Gall S., Fuhs W. A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth. 2006; 287 (2): 423–427. doi: 10.1016/j.jcrysgro.2005.11.057.
- Ghorbanzadeh A. M., Barzan M. Improvement of Nd: YAG laser efficiency by long lifetime dye doped ORMOSILs. Laser Physics. 2013; 23(3): 035005. doi: 10.1088/1054-660x/23/3/035005.
- Farid N., Brunton A., Rumsby P., Monaghan S., Duffy R., Hurley P., O’Connor G. M. Femtosecond Laser-Induced Crystallization of Amorphous Silicon Thin Films under a Thin Molybdenum Layer. ACS Applied Materials & Interfaces. 2021; 13(31): 37797–37808. doi: 10.1021/acsami.1c07083.
- Kudryashov S., Nastulyavichus A., Krasin G. K., Khamidullin K., Boldyrev K. N., Kirilenko D., Yachmenev A., Ponomarev D. S., Komandin G., Lebedev S., Prikhodko D., Kovalev M. CMOS-compatible direct laser writing of sulfur-ultrahyperdoped silicon: Breakthrough pre-requisite for UV-THz optoelectronic nano/microintegration. Optics and Laser Technology. 2023; 158: 108873. doi: 10.1016/j.optlastec.2022.108873.
- Danilov P. A., Ionin A. A., Kudryashov S. I., Rudenko A. A. et al. Femtosecond laser ablation of thin silver films in air and water under tight focusing. Optical Materials Express. 2020; 10 (10): 2717–2722. doi: 10.1364/OME.406054.
- Podlesnykh I. M. et al. Enhanced broadband IR absorption and electrical characteristics of silicon variably hyperdoped by sulfur (1018–1021 cm-3) by ion implantation/pulsed laser annealing. Materials Science in Semiconductor Processing. 2024; 184: 108830. doi: 10.1016/j.mssp.2024.108830.
Supplementary files









