Single-pulse laser-induced Al transfer onto the Si wafer for ohmic contact development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article examines the aluminum contacts on silicon wafers developed by the laser-induced forward transfer. It is determined that a single-pulse regime with an energy density of 15 J/cm2 leads to an aluminum concentration of 18.6% and a minimum contact resistance of 439 ± 4 Ohm. The method simplifies the contact generation process and eliminates the need for complex cleaning, making it promising for future silicon-based electronic applications.

Full Text

Restricted Access

About the authors

M. S. Kovalev

Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: kovalevms@lebedev.ru
ORCID iD: 0000-0001-5074-0718

Cand.of Sc.(Tech.), Senior Researcher

Russian Federation, Moscow

N. G. Stsepuro

Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)

Email: kovalevms@lebedev.ru
ORCID iD: 0000-0002-8383-7396

Junior Research Fellow, LPI, Senior Lecturer, Bauman Moscow State Technical University (National Research University (Bauman Moscow State Technical University)

Russian Federation, Moscow; Moscow

E. V. Ulturgasheva

Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)

Email: kovalevms@lebedev.ru

Junior Research Fellow, LPI, Junior Research Fellow, Bauman Moscow State Technical University

Russian Federation, Moscow; Moscow

S. I. Kudryashov

Lebedev Physical Institute of the Russian Academy of Sciences; Bauman Moscow State Technical University (National Research University)

Email: kovalevms@lebedev.ru
ORCID iD: 0000-0001-6657-2739

Dr. of Sc.(Phys.&Math.), Leading Researcher at the LPI, Leading Researcher at the Bauman Moscow State Technical University

Russian Federation, Moscow; Moscow

References

  1. Serra P., Piqué, A. Laser-Induced Forward Transfer: Fundamentals and Applications. Advanced Materials Technologies. 2018; 4(1): 1800099. doi: 10.1002/admt.201800099.
  2. Morales M., Munoz-Martin D., Marquez A., Lauzurica S., Molpeceres C. Advances in Laser Materials Processing in Laser-Induced Forward Transfer. Techniques and Applications. 2018; 339–379. doi: 10.1016/B978-0-08-101252-9.00013-3.
  3. Kovalev M. S., Podlesnykh I. M., Pevchikh K. E., Kudryashov S. I. Near-Infrared Planar Photonics Based on Hyperdoped Silicon: Prospect. Photonics Russia. 2024; 2: 136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151. Ковалев М. С., Подлесных И. М., Певчих К. Э., Кудряшов С. И. Планарная фотоника ближнего инфракрасного диапазона на основе сверхлегированного кремния: перспективы. Фотоника. 2024; 2: 136–151. doi: 10.22184/1993-7296.FRos.2024.18.2.136.151.
  4. Manickam S., Wang, J., Huang, C. Laser–material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2013; 227(11): 1714–1723. doi: 10.1177/0954405413492322.
  5. Nastulyavichus A. А., Kudryashov S. I., Smirnov N. А. et al. Selection of regimes for one-step high-throughput laser printing of silver conducting lines on silicon by forward laser transfer. Journal of optical technology. 2024; 91 (2): 99–111. (In Russ.). doi: 10.17586/1023-5086-2024-91-02-99-111. Настулявичус А. А., Кудряшов С. И., Смирнов Н. А. [и др.] Выбор режимов одностадийной высокопроизводительной печати серебряных проводящих дорожек на поверхности кремния методом лазерного переноса. Оптический журнал. 2024; 91 (2): 99–111. doi: 10.17586/1023-5086-2024-91-02-99-111.
  6. Zacharatos F., Karvounis P., Theodorakos I., Hatziapostolou A., Zergioti I. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes. Materials (Basel). 2018; 11(6):1036. doi: 10.3390/ma11061036.
  7. Mehrpouya M., Emamian S. Recent advantages in laser fabrication of micro-channel heat exchangers. Materialwissenschaft Und Werkstofftechnik. 2017; 48(3–4): 205–209. doi: 10.1002/mawe.201600759.
  8. Tzou A.-J., Hsieh D.-H., Chen S.-H., Li Z.-Y., Chang C.-Y., Kuo H.-C. Non-thermal alloyed ohmic contact process of GaN-based HEMTs by pulsed laser annealing. Semiconductor Science and Technology. 2016; 31(5): 055003. doi: 10.1088/0268-1242/31/5/055003.
  9. S. Rascunà, P. Badalà, C. Tringali, C. Bongiorno, E. Smecca, A. Alberti, S. Di Franco, F. Giannazzo, G. Greco, F. Roccaforte, M. Saggio. Morphological and electrical properties of Nickel based Ohmic contacts formed by laser annealing process on n-type 4H-SiC. Materials Science in Semiconductor Processing. 2019, 97: 62–66. doi: 10.1016/j.mssp.2019.02.031.
  10. Hou M., Xie G., Sheng K. Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing. Chinese Physics B. 2019; 28(3): 037302. doi: 10.1088/1674-1056/28/3/037302.
  11. Wang L., Carlson D., Gupta M. Silicon solar cells based on all-laser-transferred contacts. Progress in Photovoltaics: Research and Applications. 2015; 23: 61–68. doi: 10.1002/pip.2395.
  12. Raghavan A. S., Palmer T. A., Kragh-Buetow K. C., Domask A. C., Reutzel E. W., Mohney S. E., DebRoy T. Employing microsecond pulses to form laser-fired contacts in photovoltaic devices. Progress in photovoltaics. 2015; 23 (8): 1025–1036. DOI:0.1002/pip.2523.
  13. Raghavan A., Palmer T. A., DebRoy T. Evolution of laser-fired aluminum-silicon contact geometry in photovoltaic devices. Journal of Applied Physics. 2012; 111(2): 024903. doi: 10.1063/1.3675442.
  14. Schneider J., Sarikov A., Klein J., Muske M., Sieber I., Quinn T., Reehal H. S., Gall S., Fuhs W. A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth. 2006; 287 (2): 423–427. doi: 10.1016/j.jcrysgro.2005.11.057.
  15. Ghorbanzadeh A. M., Barzan M. Improvement of Nd: YAG laser efficiency by long lifetime dye doped ORMOSILs. Laser Physics. 2013; 23(3): 035005. doi: 10.1088/1054-660x/23/3/035005.
  16. Farid N., Brunton A., Rumsby P., Monaghan S., Duffy R., Hurley P., O’Connor G. M. Femtosecond Laser-Induced Crystallization of Amorphous Silicon Thin Films under a Thin Molybdenum Layer. ACS Applied Materials & Interfaces. 2021; 13(31): 37797–37808. doi: 10.1021/acsami.1c07083.
  17. Kudryashov S., Nastulyavichus A., Krasin G. K., Khamidullin K., Boldyrev K. N., Kirilenko D., Yachmenev A., Ponomarev D. S., Komandin G., Lebedev S., Prikhodko D., Kovalev M. CMOS-compatible direct laser writing of sulfur-ultrahyperdoped silicon: Breakthrough pre-requisite for UV-THz optoelectronic nano/microintegration. Optics and Laser Technology. 2023; 158: 108873. doi: 10.1016/j.optlastec.2022.108873.
  18. Danilov P. A., Ionin A. A., Kudryashov S. I., Rudenko A. A. et al. Femtosecond laser ablation of thin silver films in air and water under tight focusing. Optical Materials Express. 2020; 10 (10): 2717–2722. doi: 10.1364/OME.406054.
  19. Podlesnykh I. M. et al. Enhanced broadband IR absorption and electrical characteristics of silicon variably hyperdoped by sulfur (1018–1021 cm-3) by ion implantation/pulsed laser annealing. Materials Science in Semiconductor Processing. 2024; 184: 108830. doi: 10.1016/j.mssp.2024.108830.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup the laser-induced generation of ohmic contacts

Download (105KB)
3. Fig. 2. Generation process of ohmic contacts: a) – topology of the obtained experimental sample (the red lines indicate the pairs of Al contacts obtained in one mode); b) –ablation threshold of an Al film with a thickness of 250 nm (blue line – experimental results; dotted line – approximation of results)

Download (166KB)
4. Fig. 3. SEM-image of an ohmic contact on the acceptor silicon wafer surface obtained at an energy density of 15.3 J/cm2 at 10 ppd

Download (276KB)
5. Fig. 4. 2D maps of the EDS spectra of ohmic contacts on the acceptor silicon wafer surface obtained at an energy density of 15.3 J/cm² and 10 ppd for the elements Si (a), Al (c), O (e), and C (g). The EDS depth measurements are given, obtained at various distances z between the donor and acceptor substrates, for the elements Si (b), Al (d), O (f), and C (h), and at various ppd.

Download (1MB)
6. Fig. 5. Changes in the concentration of materials (Si, Al, O, C, etc.) at various energy densities (analysis of EDS spectra of a silicon acceptor substrate under the conditions of ohmic contact development)

Download (97KB)
7. Fig. 6. Changes in resistance between two ohmic contacts through an acceptor silicon substrate depending on: a) the energy density (the distance between the acceptor and donor substrates is 20 μm); b) the distance between the donor and acceptor substrates with varying ppd (the energy density is 15 J/cm2)

Download (142KB)
8. Fig. 7. Current-voltage characteristic of the Al contacts on the Si wafer

Download (74KB)

Copyright (c) 2025 Kovalev M.S., Stsepuro N.G., Ulturgasheva E.V., Kudryashov S.I.