Bimetallic terbium and europium tetrafluoroterephthalates with phenanthroline: photostability and application in thermometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The luminescent complexes of terbium and europium with tetrafluoroterephthalic acid and phenanthroline were studied for application in thermometry. It was shown that in contrast to a mixture of individual complexes demonstrating various photodegradation rates, the bimetallic complex retains a stable intensity ratio of the Tb3+ and Eu3+ emission bandswith a general decrease in the luminescence intensity. The composite materials based on the synthesized complexes in polyimide and polystyrene matrices were developed with simultaneous combination of thermosensitive properties with mechanical stability. The results obtained offer opportunities for the development of stable luminescent thermometers for biological and microelectronic applications.

Full Text

Restricted Access

About the authors

Anastasia V. Orlova

Lomonosov Moscow State University

Author for correspondence.
Email: lea.rosa.17@mail.ru
ORCID iD: 0000-0003-2534-2835

PhD student, Faculty of the Material Science

Russian Federation, Moscow

Liubov O. Tcelykh

Lomonosov Moscow State University

Email: tcelykh@my.msu.ru
ORCID iD: 0000-0002-1250-4017

PhD student, Department of Chemistry

Russian Federation, Moscow

Daniil S. Koshelev

Lomonosov Moscow State University

Email: koshelevds@my.msu.ru
ORCID iD: 0000-0001-8210-6690

Cand. of Sc. (Chemistry), Junior Research Fellow, Department of Chemistry

Russian Federation, Moscow

Anton V. Bulatov

Sirius Educational Center

Email: toni.bulatov.07@mail.ru
ORCID iD: 0009-0005-2412-9145
Russian Federation, Krasnodar region, Sirius Federal Territory

Milena R. Garbuzova

Sirius Educational Center

Email: garbuzovamilenka@gmail.com
ORCID iD: 0009-0007-7108-3455
Russian Federation, Krasnodar region, Sirius Federal Territory

Kirill R. Zezyulya

Sirius Educational Center

Email: kirillzezyulya@gmail.com
ORCID iD: 0009-0001-2582-479X
Russian Federation, Krasnodar region, Sirius Federal Territory

Evgenii D. Marshev

Sirius Educational Center

Email: marshev07@bk.ru
ORCID iD: 0009-0001-6089-7695
Russian Federation, Krasnodar region, Sirius Federal Territory

Lada S. Rubanova

Sirius Educational Center

Email: lada.rubanova.00@mail.ru
ORCID iD: 0009-0002-0425-5046
Russian Federation, Krasnodar region, Sirius Federal Territory

Timofei L. Tsymbal

Sirius Educational Center

Email: cymbalt112@gmail.com
ORCID iD: 0009-0003-4695-4045
Russian Federation, Krasnodar region, Sirius Federal Territory

Valentina V. Utocnikova

Lomonosov Moscow State University

Email: valentina@utochnikova.ru
ORCID iD: 0000-0002-0830-1268

Dr. of Science, Prof. Faculty of the Material Science

Russian Federation, Moscow

References

  1. Dramićanin M. D. Trends in luminescence thermometry. Journal of Applied Physics. 2020; 128(4). doi: 10.1063/5.0014825.
  2. Brites C., Lima P. P., Silva N., Millán Á., Amaral, Palacio F., Carlos L. Lanthanide-based luminescent molecular thermometers. New Journal of Chemistry. 2011; 35:1177–1183. doi: 10.1039/C0NJ01010C.
  3. Allison S. W., Gillies G. T. Remote thermometry with thermographic phosphors: Instrumentation and applications. Review of Scientific Instruments. 1997; 68(7):2615–2650. doi: 10.1063/1.1148174.
  4. Pudovkin M. S., Morozov O. A., Pavlov V. V., Korableva S. L., Lukinova E. V., Osin Y. N., Evtugyn V. G., Safiullin R. A., Semashko V. V. Physical Background for Luminescence Thermometry Sensors Based on Pr3+: LaF3 Crystalline Particles. J. Nanomater. 2017; 2017:1–9. doi: 10.1155/2017/3108586.
  5. Geitenbeek R. G., Vollenbroek J. C., Weijgertze M. H., et al. Luminescence thermometry for: In situ temperature measurements in microfluidic devices. Lab on a Chip journal. 2019; 19(7):1236–1246. doi: 10.1039/c8lc01292j.
  6. Aldén M., Omrane A., Richter M., Särner G. Thermographic phosphors for thermometry: A survey of combustion applications. Prog Energy Combust Sci. 2011; 37(4):422–461. doi: 10.1016/j.pecs.2010.07.001.
  7. Vialtsev M. B., Tcelykh L. O., Kozlov M. I., Latipov E. V., Bobrovsky A. Y., Utochnikova V. V. Terbium and europium aromatic carboxylates in the polystyrene matrix: The first metal-organic-based material for high-temperature thermometry. Journal of luminescence. 2021; 239:118400. doi: 10.1016/j.jlumin.2021.118400.
  8. Tcelykh L. O., Latipov E. V., Lepnev L. S., Anosov A., Kozhevnikova V., Kuzmina N. P., Utochnikova V. V. Highly Sensitive and Highly Emissive Luminescent Thermometers for Elevated Temperatures Based on Lanthanide-Doped Polymers. Inorganics. 2023; 11(5):189. doi: 10.3390/inorganics11050189.
  9. Tcelykh L. O., Kozhevnikova V.Yu., Goloveshkin A. S., Latipov E. V., Gordeeva E. O., Utochnikova V. V. Sensing temperature with Tb-Eu-based luminescent thermometer: A novel approach to increase the sensitivity. Sensors Actuators A Phys. 2022; 345:113787. doi: 10.1016/j.sna.2022.113787.
  10. Savostianov A. O., Eremchev I. Yu., Naumov A. V. Luminescence Nanothermometry by Single Organic Molecules: Manifestation of Electron-Phonon Interaction. Photonics Russia. 2023; 17(7):508–515. doi: 10.22184/1993-7296. Савостьянов А. О., Еремчев И. Ю., Наумов А. В. Люминесцентная нанотермометрия с одиночными органическими молекулами: влияние электрон-фононного взаимодействия. Фотоника. 2023; 17(7):508–515. doi: 10.22184/1993-7296.
  11. Povolockij A. V., Smirnova O. S., Soldatova D. A., Luk’yanov D. A. Fluorescentnye ratiometricheskie termometry na osnove diad tetrafenilporfirina i metallirovannogo cinkom tetrafenilporfirina. Izvestiya Rossijskoj akademii nauk. Seriya fizicheskaya. 2023; 87(11):1631–1636. doi: 10.31857/S0367676523702824. Поволоцкий А. В., Смирнова О. С., Солдатова Д. А., Лукьянов Д. А. Флуоресцентные ратиометрические термометры на основе диад тетрафенилпорфирина и металлированного цинком тетрафенилпорфирина. Известия Российской академии наук. Серия физическая. 2023; 87(11):1631–1636. doi: 10.31857/S0367676523702824.
  12. Khodunkov V. P. Physical and technical aspects of radiometric thermometry from the perspective of a new definition of the temperature unit. Uspekhi Fizicheskikh Nauk. 2024; 194(7):753–764. doi: 10.3367/UFNe.2023.10.039571.
  13. Gurbatov C. O., SHevlyagin A.V., ZHizhchenko A.YU., Modin E. B., Kuchmizhak A. A., Kudryashov S. I. Fototermicheskaya konversiya i lazerno-inducirovannye transformacii v splavnyh kremnij-germanievyh nanochasticah. Pis’ma v ZHurnal eksperimental’noj i teoreticheskoj fiziki. 2024; 119(11–12):882–889. DOI: https://doi.org/10.31857/S123456782412003 Гурбатов C. О., Шевлягин А. В., Жижченко А. Ю., Модин Е. Б., Кучмижак А. А., Кудряшов С. И. Фототермическая конверсия и лазерно-индуцированные трансформации в сплавных кремний-германиевых наночастицах. Письма в Журнал экспериментальной и теоретической физики. 2024; 119(11–12):882–889. DOI: https://doi.org/10.31857/S1234567824120036.
  14. Pan Y., Su H., Zhou E., Yin H., Shao K., Su Z. A stable mixed lanthanide metal-organic framework for highly sensitive thermometry. Dalton Trans. 2019; 48:3723–3729. doi: 10.1039/C9DT00217K.
  15. Lapaev D. V., Nikiforov V. G., Lobkov V. S., Knyazev A. A., Galyametdinov Y. G. Journal of Materials Chemistry C. 2018; 6(35):9475–9481. doi: 10.1039/C8TC01288A.
  16. Meng X., Song S.-Y., Song X.-Z., Zhu M., Zhao S.-N., Wua L.-L., Zhang H.-J. A Eu/Tb-codoped coordination polymer luminescent thermometer. Inorg. Chem. Front. 2014; 1:757. doi: 10.1039/c4qi00122b.
  17. Dasari S., Singh S., Sivakumar S., Patra A. K. Dual-Sensitized Luminescent Europium(III) and Terbium(III) Complexes as Bioimaging and Light-Responsive Therapeutic Agents. Chem. Eur. J. 2016; 22:17387–17396. doi: 10.1002/chem.201603453.
  18. Naumov A. V., Utochnikova V. V. Achievements and Perspectives of Luminescence at the All-Russian Conference with International Participation LUMOS-2024. Photonics Russia. 2024; 18(3):224–228. doi: 10.22184/1993-7296.FRos.2024.18.3.224.228. Наумов А. В., Уточникова В. В. Достижения и перспективы люминесценции на всероссийской конференции с международным участием LUMOS-2024. Фотоника. 2024; 18(3):224–228. doi: 10.22184/1993-7296.FRos.2024.18.3.224.228.
  19. Di W., Li J., Shirahata N., Sakka Y., Willingere M.-G., Pinna N. Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium. Nanoscale. 2011; 3:1263–1269. doi: 10.1039/C0NR00673D.
  20. Brites C. D.S., Milla A., Carlos L. D. Lanthanides in Luminescent Thermometry. Handbook on the Physics and Chemistry of Rare Earths. 2016; 281:339–427. doi: 10.1016/bs.hpcre.2016.03.005.
  21. Emelina T., Zadoroznaya A., Kalinovskaya I., Mirochnik A. Unexpected luminescent and photochemical properties of europium(III) cinnamates – Theoretical and experimental study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 225: 117481.
  22. Vialtsev M. B., Tcelykh L. O., Bobrovsky A.Yu., Utochnikova V. V. Lanthanide Complexes for Elevated Temperature Luminescence Thermometry: Mixture vs Bimetallic Compound. Journal of Alloys and Compounds. 2022; 924:166421. doi: 10.1016/j.jallcom.2022.166421.
  23. Qin R., Liu L. Electrospinning synthesis of Fe3O4/Eu(DBM)3phen/PVP multifunctional microfibers and their structure, luminescent and magnetic properties. J. Mater Sci: Mater Electron. 2021; 32:18741–18750. doi: 10.1007/s10854-021-06393-5.
  24. Utochnikova V. V., Grishko A., Vashchenko A., Goloveshkin A., Averin A., Kuzmina N. Lanthanide perfluoroterephthalates for luminescent ink-jet printing. European Journal of Inorganic Chemistry. 2017; 48:5635–5639. doi: 10.1002/ejic.201700896.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Polymer composites: a) – Powder diffraction pattern of the [Eu2(TFTA)3(Phen)2]∙2H2O complex in comparison with literature data [24]; b) – Thermogravimetric decomposition curves of [Tb2(TFTA)3(Phen)2]∙2H2O; c) – SEM photograph of [(Eu0.005Tb0.995)2(TFTA)3(Phen)2]∙2H2O; d) – Photograph of composite materials based on [(Eu0.02Tb0.98)2(TFTA)3Phen2]∙2H2O and PS or PI2050

Download (249KB)
3. Fig. 2. Study of luminescent properties: a) – Luminescence spectra of [(EuхTb1-х)2(TFTA)3Phen2]∙2H2O; b) – Dependences of integral luminescence intensities of the monometallic complex powders [Eu2(TFTA)3Phen2]∙2H2O (red dots) and [Tb2(TFTA)3Phen2]∙2H2O (green dots); c) – Time dependence of LIR under the constant UV 365 nm irradiation and a temperature of 100 °C; d) – Photograph in the case of UV lamp (365 nm) irradiation of the composite materials based on [(EuхTb1-х)2(TFTA)3Phen2]∙2H2O in PS (x = 0, 0.001, 0.02, 1); e) – Powder diffraction patterns of the [Eu2(TFTA)3(Phen)2]∙2H2O complex before and after photodegradation; f–h) – Dependence of: f) luminescence spectra of [(Eu0.001Tb0.999)2(TFTA)3Phen2]∙2H2O powder; g) – LIR of the composite based on [(Eu0.0001Tb0.9999)2(TFTA)3Phen2]∙2H2O in PI2050; h) – LIR of [(Eu0.001Tb0.999)2(TFTA)3Phen2]∙2H2O powder on temperature

Download (362KB)

Copyright (c) 2025 Orlova A.V., Tcelykh L.O., Koshelev D.S., Bulatov A.V., Garbuzova M.R., Zezyulya K.R., Marshev E.D., Rubanova L.S., Tsymbal T.L., Utocnikova V.V.