Achievements and perspectives of luminescence at the all-russian conference with international participation LUMOS-2024

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The All-Russian conference with international participation LUMOS-2024, dedicated to the theoretical and practical aspects of the luminescence phenomenon (https://lumos-2024.ru/), was held in Moscow. The main organizer of the event was the Faculty of Chemistry and the Faculty of Materials Sciences of Lomonosov Moscow State University with the active participation of the Russian Academy of Sciences (RAS).

Full Text

Restricted Access

About the authors

A. V. Naumov

P. N. Lebedev Physical Institute of RAS; Moscow Pedagogical State University (MPGU)

Author for correspondence.
Email: journal@electronics.ru
Russian Federation, Moscow, Troitsk; Moscow

V. V. Utochnikova

M. V. Lomonosov Moscow State University

Email: journal@electronics.ru
Russian Federation, Moscow

References

  1. Levkov L. L., Borshchev O. V., Pisarev S. A. et al. Novel organic luminophores with benzene-1,3,5-triyl branching units. Mendeleev Communications. 2024; 34(2): 170–173. https://doi.org/10.1016/j.mencom.2024.02.004.
  2. Eremchev I.Yu, Eremchev M.Yu, Naumov A. V. Multifunctional far-field luminescence nanoscope for studying single molecules and quantum dots. Physics Uspekhi. 2019; 62: 294–303. https://doi.org/10.3367%2FUFNe.2018.06.038461.
  3. Ремпель А. А., Овчинников О. В., Вайнштейн И. А. и др. Квантовые точки: cовременные методы синтеза и оптические свойства. Russian Chemical Reviews. 2024; 93 (4): RCR5114. https://doi.org/10.59761/RCR5114.
  4. Glazov M. M. Excitons in atomically thin materials flow faster than they fly. Nature Nanotechnology. 2023; 18(9): 972–973. https://doi.org/10.1038/s41565-023-01448-6.
  5. Glazov M. M., Suris R. A. Collective states of excitons in semiconductors. Physics Uspekhi. 2020;63: 1051–1071. https://doi.org/10.3367%2FUFNe.2019.10.038663.
  6. Shakirova, J.R., Baigildin, V.A., Solomatina, A.l. et al. Intracellular pH Sensor Based on Heteroleptic Bis-Cyclometalated Iridium(III) Complex Embedded into Block-Copolymer Nanospecies: Application in Phosphorescence Lifetime Imaging Microscopy. Advanced Functional Materials. 2023; 33(10): 2212390. https://doi.org/10.1002/adfm.202212390.
  7. Shirmanova M. V., Lukina M. M., Sirotkina M. A. et al. Effects of Photodynamic Therapy on Tumor Metabolism and Oxygenation Revealed by Fluorescence and Phosphorescence Lifetime Imaging. International Journal of Molecular Sciences. 2024;25(3):1703. https://doi.org/10.3390/ijms25031703.
  8. Minakov D. A., Suvorov N. V., Tikhonov S. l. et al. Development of lodine-Containing Natural Chlorins as Prototypes of Radiopharmaceuticals with lodine Radionuclides. Macroheterocycles. 2023; 16(2): 137–143. https://doi.org/10.6060/mhc235182m.
  9. Vasil’ev R. B., Dirin D. N., Gas’kov A. M. Kolloidnye poluprovodnikovye nanokristally s prostranstvennym razdeleniem nositelej zaryada: rost i opticheskie svojstva. Russian Chemical Reviews. 2011; 80: 1190–1210. https://doi.org/10.1070/RC2011v080n12ABEH004240. Васильев Р. Б., Дирин Д. Н., Гаськов А. М. Коллоидные полупроводниковые нанокристаллы с пространственным разделением носителей заряда: рост и оптические свойства. Russian Chemical Reviews. 2011; 80: 1190–1210. https://doi.org/10.1070/RC2011v080n12ABEH004240.
  10. Rodina A. V. Mid-infrared irradiation keeps nanocrystals brigh. Nature Nanotechnology. 2021;16(12):1304–1305. https://doi.org/10.1038/s41565-021-01029-5.
  11. Fedorenko R. S., Kuevda A. V., Trukhanov V. A., et al. Luminescent High-Mobility 2D Organic Semiconductor Single Crystals. Advanced Electronic Material. 2022;8(7): 2101281. https://doi.org/10.1002/aelm.202101281.
  12. Maksimov A. A., Filatov E. V., Tartakovskii I. I., et al. Circularly Polarized Laser Emission from an Electrically Pumped Chiral Microcavity. Physical Review Applied. 2022;17(2): A34. https://doi.org/10.1103/PhysRevApplied.17.L021001.
  13. Shakhova E. S., Karataeva T. A., Markina N. M. et al. An improved pathway for autonomous bioluminescence imaging in eukaryotes. Nature Methods. 2024; 21:406–410. https://doi.org/10.1038/s41592-023-02152-y.
  14. https://www.photonics.su/news/10616.
  15. Naumov A. V., Popova M. N., Malkin B. Z., Karimullin K. R. 18-j Mezhdunarodnyj Feofilovskij simpozium (IFS-2022) po spektroskopii kristallov, aktivirovannyh ionami redkozemel’nyh i perekhodnyh metallov (22–26 avgusta 2022 g., Moskva). Optika i spektroskopiya. 2023; 4: 435. Наумов А. В., Попова М. Н., Малкин Б. З., Каримуллин К. Р. 18-й Международный Феофиловский симпозиум (IFS-2022) по спектроскопии кристаллов, активированных ионами редкоземельных и переходных металлов (22–26 августа 2022 г., Москва). Оптика и спектроскопия. 2023; 4: 435.
  16. Feofilov P. P. Vtoroe vsesoyuznoe soveshchanie po lyuminescencii. Uspekhi fizicheskih nauk. 1948;36:557–566. https://doi.org/10.3367/UFNr.0036.194812i.0557. Феофилов П. П. Второе всесоюзное совещание по люминесценции. Успехи физических наук. 1948;36:557–566. https://doi.org/10.3367/UFNr.0036.194812i.0557.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (578KB)

Copyright (c) 2024 Naumov A.V., Utochnikova V.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies