Single-photon sources. Review. Part 1
- Authors: Krishtop V.G.1,2,3
-
Affiliations:
- Institute of Microelectronics Technology and High Purity Materials RAS
- JSC “InfoTeСS”
- Moscow Institute of Physics and Technology
- Issue: Vol 18, No 5 (2024)
- Pages: 376-396
- Section: Quantum Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/642209
- DOI: https://doi.org/10.22184/1993-7296.FROS.2024.18.5.376.396
- ID: 642209
Cite item
Abstract
The review discusses various ways to create single-photon sources (SPS). The task of generating single photons can be solved in various ways, and at the moment there is no one among them that would be significantly preferable. An extensive list of literature makes it possible to analyze the prospects for the development of single-photon sources.
Full Text

About the authors
Vladimir G. Krishtop
Institute of Microelectronics Technology and High Purity Materials RAS; JSC “InfoTeСS”; Moscow Institute of Physics and Technology
Author for correspondence.
Email: krishtop@iptm.ru
ORCID iD: 0000-0001-6063-2657
research fellow, associate professor
Russian Federation, Chernogolovka, Moscow region.; Moscow; Dolgoprudny, Moscow regionReferences
- Развитие фотоники в России и мире: публичный аналитический доклад. – М.: Сфера Битуби. 2016. 432 с. ISBN 978-5-9909093-0-4.
- Рябцев И. И., Юркевичюс С. П., Гриценко А. Е. Проблемы и перспективы создания квантовых систем связи. Инноватика и экспертиза. 2020; 1 (29):2733. https://doi.org/10.35264/1996-2274-2020-1-27-33
- Бычков С. Б., Глазов А. И., Зотов А. В., Тихомиров С. В. Методика и результаты исследования источника одиночных фотонов с помощью однофотонного фотодетектора на основе MRS-лавинного фотодиода. ВКВО-2021, стендовые доклады. https://doi.org/10.24412/2308-6920-2021-6-428-429
- Hanbury Brown, R.; Twiss, R. Q. Correlation between Photons in two Coherent Beams of Light. Nature. 1956; 177 (4497): 27–29. https://doi.org/10.1038/177027a0
- Schweickert L., Jöns K. D., Zeuner K. D., Covre da Silva S. F., Huang H., Lettner T., Reindl M., Zichi J., Trotta R., Rastelli A., Zwiller V. On-demand generation of background-free single photons from a solid-state source. Applied Physics Letters. 2018;112(9): 093106. https://doi.org/10.1063/1.5020038
- Paul H. Photon antibunching. Reviews of Modern Physics. 1982;54 (4): 1061–1102. https://doi.org/10.1103/RevModPhys.54.1061
- Lo H. K., Ma X., Chen K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005; 94, (23): 230504. https://doi.org/10.1103/PhysRevLett.94.230504
- Eisaman M. D., Fan J., Migdall A., Polyakov S. V. Invited Review Article: Single-photon sources and detectors. Review of Scientific Instruments. 2011; 82 (7): 071101–071101–25. https://doi.org/10.1063/1.3610677
- Al-Kathiri S., Al-Khateeb W., Hafizulfika M., Wahiddin M. R., Saharudin S. Characterization of mean photon number for key distribution system using faint laser. 2008. International Conference on Computer and Communication Engineering. https://doi.org/10.1109/ICCCE.2008.4580803
- Молотков С. Н. О секретности волоконных систем квантовой криптографии без контроля интенсивности квазиоднофотонных когерентных состояний. Письма в ЖЭФТ. 2015; 101(8):647–643. https://doi.org/10.7868/S0370274X15080135
- Стандарт ETSI Group Specification QKD 011 V1.1.1 (2016-05) https://www.etsi.org/deliver/etsi_gs/QKD/001_099/011/01.01.01_60/gs_QKD011v010101p.pdf.
- Сущев И. Атаки на системы квантового распределения ключей. 2023. Квантовые технологии информационной безопасности. https://quantum-crypto.ru. https://quantum-crypto.ru/articles/ataki-na-sistemy-kvantovogo-raspredeleniya-klyuchey.
- Hwang W.-Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 20003; 91 (5): 057901. https://doi.org/10.1103/physrevlett.91.057901
- Lo H.-K., Ma X., Chen K. Decoy State Quantum Key Distribution. Physical Review Letters. 2005;94 (23): 230504. https://doi.org/10.1103/physrevlett.94.230504
- Lounis B., Orrit M. Single-photon sources. Reports on Progress in Physics. 2005;68(5):1129–1179. http://dx.doi.org/10.1088/0034-4885/68/5/R04
- Попов В. Г., Криштоп В. Г., Тарелкин C. А., Корель И. И. Комбинационное рассеяние света квазиоднофотонных импульсов в оптоволокне с накачкой. Физика и техника полупроводников. 2020; 54: 727. http://dx.doi.org/10.21883/FTP.2020.08.49631.07. http://dx.doi.org/10.1134/S1063782620080199
- Esfandyaropour V., Langrock C., Fеjer M. Cascaded downconversion interface to convert single-photon-level signals at 650 nm to the telecom band. Optics Letters. 2018;43: 5655–5658. https://doi.org/10.1364/OL.43.005655
- Hong C. K.; Ou Z. Y., Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987;59 (18): 2044–2046. https://doi.org/10.1103/PhysRevLett.59.2044
- Somaschi N., Giesz V., De Santis L., Loredo J. C., Almeida M. P., Hornecker G., Portalupi S. L., Grange T., Anton C., Demory J. Near-optimal single-photon sources in the solid state. Nature Photonics. 2016; 10 (5): 340–345. https://doi.org/10.1038/nphoton.2016.23
- X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 2016; 116 (2): 020401. https://doi.org/10.1103/PhysRevLett.116.010401
- Guilbert H. E., Gauthier D. J. Enhancing Heralding Efficiency and Biphoton Rate in Type-I Spontaneous Parametric Down-Conversion. IEEE Journal of Selected Topics in Quantum Electronics. 2015;21(3):215–224., 6400610. http://dx.doi.org/10.1109/JSTQE.2014.2375161
- Jabir M. V., Samanta G. K. Robust, high brightness, degenerate entangled photon source at room temperature. Scientific Reports 7. 2017; 12613. https://doi.org/10.1038/s41598-017-12709-5
- Shukhin A., Latypov I. Z., Shkalikov A. V., Kalachev A. A. Simulating Single-Photon Sources Based on Backward-Wave Spontaneous Parametric Down-Conversion in a Periodically Poled KTP Waveguide. EPJ Web of Conferences. 2015;103: 10009. https://doi.org/10.1051/epjconf/201510310009
- Massaro M., Meyer-Scott E., Montaut N., Herrmann H., Silberhorn C. Improving SPDC single-photon sources via extended heralding and feed-forward control. New Journal of Physics. 2019; 21:053038. http://dx.doi.org/10.1088/1367-2630/ab1ec3
- Goldschmidt E. A., Eisaman M. D., Fan J., Polyakov S. V., Migdall A. Spectrally bright and broad fiber-based heralded single-photon source. Phys. Rev. A. 2008;78: 013844. http://dx.doi.org/10.1103/PhysRevA.78.013844
- Rottwitt K., Koefoed J. G., Christensen E. N. Photon-Pair Sources Based on Intermodal Four-Wave Mixing in Few-Mode Fibers. Fibers. 2018;6. https://doi.org/10.3390/fib6020032
- Wu E., Rabeau J. R., Roger G., Treussart F., Zeng H., Grangier P., Prawer S., Roch J.-F. Room temperature triggered single-photon source in the near infrared. New Journal of Physics. 2007; 9(12):434. http://dx.doi.org/10.1088/1367-2630/9/12/434
- Alleaume R., Treussart F., Messin G., Dumeige Y., Roch J.-F., Beveratos A., Brouri-Tualle R., Poizat J.-P., Grangier P. Experimental open-air quantum key distribution with a single-photon source. New Journal of Physics. 2004;6:92. https://doi.org/10.1088/1367-2630/6/1/092
- Kako S., Santori C., Hoshino K., Gotzinger S., Yamamato Y., Arakawa Y. A gallium nitride single-photon source operating at 200K. Nature Materials. 2006;5:887. https://doi.org/10.1038/nmat1763
- Strauf S., Stoltz N. G., Rakher M. T., Coldren L. A., Petroff P. M., Bouwmeester D. High-frequency single-photon source with polarization control. Nature Photonics. 2007;1:704–708. https://doi.org/10.1038/nphoton.2007.227
- Huber M., Reindl S. F., Silva C. D., Schimpf C., Martín-Sánchez J., Huang H., Piredda G., Edlinger J., Rastelli A., Trotta R. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. Phys. Rev. Lett. 2018;121: 033902. https://doi.org/10.1103/PhysRevLett.121.033902
- Hennrich M., Legero T., Kuhn A., Rempe G. Photon statistics of a non-stationary periodically driven single-photon source. New Journal of Physics. 2004; 6: 86. https://doi.org/10.1088/1367-2630/6/1/086
- Higginbottom D. B., Slodička L., Araneda G., Lachman L., Filip R., Hennrich M. Blatt R. Pure single photons from a trapped atom source. New Journal of Physics. 2016;18(9):093038. http://dx.doi.org/10.1088/1367-2630/18/9/093038
- Maurer C., Becher C., Russo C., Eschner J., Blatt R. A single-photon source based on a single Ca+ ion. New Journal of Physics. 2004;6(1):94. http://dx.doi.org/10.1088/1367-2630/6/1/094
- Steiner M., Hartschuh A., Korlacki R., Meixner A. J. Highly efficient, tunable single photon source based on single molecules. Appl. Phys. Lett. 2007;90:183122. https://doi.org/10.1063/1.2736294
- Chen S., Chen Y.-A., Strassel T., Yuan Z.-S., Zhao B., Schmiedmayer, Pan J.-W. Deterministic and Storable Single-Photon Source Based on a Quantum Memory. J.Phys. Rev. Lett. 2006;97:173004. https://doi.org/10.1103/PhysRevLett.97.173004
- Panyukov I. V., Shishkov V. Yu., Andrianov E. S. Heralded single-photon source based on an ensemble of Raman-active molecules. J. Opt. Soc. Am. B. 2022;39: 2138–2148. https://doi.org/10.1364/JOSAB.457400
- Signorini S., Pavesi L. On-chip heralded single photon sources. AVS Quantum Sci. 2020;2 (4): 041701. https:// doi.org/10.1116/5.0018594
- Kaneda F., Garay-Palmett K., U’Ren A. B., Kwiat P. G. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. Opt. Express. 2016;24: 10733–10747. https://doi.org/10.1364/OE.24.010733
- Schiavon M., Vallone G., Ticozzi F., Villoresi P. Heralded single-photon sources for QKD applications. Phys. Rev. A. 2016;93:012331. https://doi.org/10.1103/PhysRevA.93.012331
- Миронов Ю. Б., Казанцев С. Ю., Шаховой Р. А., Колесников О. В., Машковцева Л. С., Зайцев А. И., Коробов А. В. Анализ перспектив развития источников одиночных фотонов в системах квантового распределения ключей. Наукоемкие технологии в космических исследованиях Земли. 2021;13(6):22–33. https://doi.org/10.36724/2409-5419-2021-13-6-22-33
- Сirac J., Zoller P. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 1995;74: 4091. https://doi.org/10.1103/PhysRevLett.74.4091
- Leibfried D., Blatt R., Monroe C., Wineland D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003;75 (1): 281–324. https://doi.org/10.1103/RevModPhys.75.281
- Stick D., Hensinger W., Olmschenk S., Madsen M. J., Schwab K., Monroe C. Ion trap in a semiconductor chip. Nature Physics. 2006;2: 36–39. https://doi.org/10.1038/nphys171
- Pogorelov I., Feldker T., Marciniak Ch.D., Postler L., Jacob G., Krieglsteiner O., Podlesnic V., Meth M., Negnevitsky V., Stadler M., Höfer B., Wächter C., Lakhmanskiy K., Blatt R., Schindler P., Monz T. Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum. 2021;2: 020343. https://doi.org/10.1103/PRXQuantum.2.020343
- Blatt R., Roos C. F. Quantum simulations with trapped ions. Nature Physics. 2012;8(4): 277–284. https://doi.org/10.1038/ nphys2252
- Tian Y., Higgs J., Li A., Barney B., Austin D. E. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps. J. Mass Spectrom. 2014; 49: 233–240. https://doi.org/10.1002/jms.3268
- Maurer C., Becher C., Russo C., Eschner J., Blatt R. A single-photon source based on a single Ca+ ion. New J. Phys. 2004;6: 94. http://dx.doi.org/10.1088/ 1367-2630/6/1/094
- Keller M., Lange B., Hayasaka K., Lange W., Walther H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature. 2004;431: 1075. http://dx.doi.org/10.1038/nature02961
- Barros H. G., Stute A., Northup T. E., Russo C., Schmidt P. O., Blatt R. Deterministic single-photon source from a single ion. New J. Phys. 2009;11: 103004. http://dx.doi.org/10.1088/1367-2630/11/10/103004
- Minnegaliev M. M., Dyakonov I. V., Gerasimov K. I., Kalinkin A. A., Kulik S. P., Moiseev S. A., Saygin M.Yu., Urmancheev R. V. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal. Laser Physics Letters. 2018; 15(4): 045207. https://doi.org/10.1088/1612-202X/aaa6a6
- Kielpinski D., Monroe C., Wineland D. Architecture for a large-scale ion-trap quantum computer. Nature (London). 2002;417:709. https://www.nature.com/articles/nature00784
- Riebe M., Monz T., Kim K., Villar A. S., Schindler P., Chwalla M., Hennrich M., Blatt R. Deterministic entanglement swapping with an ion-trap quantum computer. Nature Physics. 2008; 4: 839. https://doi.org/10.1038/nphys1107
- Home J. P., Hanneke D., Jost J. D., Amini J. M., Leibfried D., Wineland D. J. Complete Methods Set for Scalable Ion Trap Quantum Information Processing. Science. 2009;325: 1227. https://doi.org/10.1126/science.1177077
- Hennrich M., Legero T., Kuhn A., Rempe G. Photon statistics of a non-stationary periodically driven single-photon source. New J. Phys. 2004;6:86. http://dx.doi.org/10.1088/1367-2630/6/1/086
- Hijlkema M., Weber B., Specht H. P., Webster S. C., Kuhn A., Rempe G. A single-photon server with just one atom. Nature Physics. 2007;3: 253. http://dx.doi.org/10.1038/nphys569
- Kuhn A., Hennrich M., Rempe G. Deterministic Single-Photon Source for Distributed Quantum Networking. Phys. Rev. Lett. 2002;89:067901. http://dx.doi.org/10.1103/PhysRevLett.89.067901
- Wilk T., Webster S. C., Specht H. P., Rempe G., Kuhn A. Polarization-Controlled Single Photons. Phys. Rev. Lett. 2007;98: 063601. http://dx.doi.org/10.1103/PhysRevLett.98.063601
- Dayan B., Parkins A. S., Aoki T., Ostby E. P., Vahala K. J., Kimble H. J. A Photon Turnstile Dynamically Regulated by One Atom. Science. 2008;319:1062. http://dx.doi.org/10.1126/science.1152261
- Aoki T., Parkins A. S., Alton D. J., Regal C. A., Dayan B., Ostby E., Vahala K. J., Kimble H. J. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 2009;102: 083601. http://dx.doi.org/10.1103/PhysRevLett.102.083601
- Латышев С. Нобелевские премии 1997 года. Очень холодные атомы. Наука и жизнь. 1998(1). https://www.nkj.ru/archive/articles/10172.
- Grajcar M., Van der Ploeg S. H. W., Izmalkov A., Il’ichev E., Meyer H.-G., Fedorov A., Shnirman A., Schön G. Sisyphus cooling and amplification by a superconducting qubit. Nature Physics. 2008;4(8):612–616. https://doi.org/10.1038/nphys1019
- Бобров И. Б., Самойленко С. Р., Страупе С. С., Кулик С. П. Динамические голографические ловушки для одиночных нейтральных атомов. Программа Всероссийской научной конференции «Физика ультрахолодных атомов – 2018». 17–19 декабря 2018 года, Академгородок. Новосибирск, проспект Лаврентьева 13. Институт физики полупроводников им. А. В. Ржанова СО РАН. Сайт конференции: www.isp.nsc.ru/quantum18/
- Aljunid S. A., Chng B., Paesold M., Maslennikov G., Kurtsiefer C. Interaction of light with a single atom in the strong focusing regime. Journal of Modern Optics. 2011;58: 299–305. https://doi.org/10.1080/09500340.2010.522780
Supplementary files
Supplementary Files
Action
1.
JATS XML
Download (113KB)
3.
Fig. 2. The second-order autocorrelation function g(2)(τ) for a true single-photon source operating in pulsed mode. The distance between the peaks corresponds to the pulse repetition period. The dip in the middle shows that only one detector is triggered at each pulse
Download (155KB)
4.
Fig.3. A coherent source (attenuated laser), a single-photon source, and a source with bunching of photons (Delmic Blog)
Download (245KB)
5.
Fig. 4. For a laser attenuated to an intensity of 0.2 photons per pulse, most of the pulses turn out to be “empty”, and on average only about one in five pulses contain a photon. But at the same time, there is inevitably a certain fraction of pulses that contain more than one photon, and it is impossible to get rid of them
Download (217KB)
6.
Fig. 5. Ion traps [47]: Quadrupole ion trap; Linear ion trap; Toroidal ion trap; Cylindrical ion trap; Rectilinear ion trap; Toroidal ion trap with cylindrical electrodes
Download (139KB)
7.
Fig.6. A single atom in a resonator (nature.com) and single atoms in power traps (Max Planck Institute, www.mpq.mpg.de)
Download (23MB)
Download (169KB)
