Development Of Charge Trapping SONOS Memory Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this paper, a process for creating a SONOS memory cell with an improved structure within the CMOS route according to 1.5 μm process standards that can be integrated to silicon photonics is proposed. The resulting memory has a write voltage of 12 V and an erase voltage of –13 V. The write speed is 80 ms. The memory window is more than 3 V with a working window of 2 V.

Full Text

Restricted Access

About the authors

A. E. Gabdrakhmanov

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Author for correspondence.
Email: amiro202020@gmail.com
ORCID iD: 0009-0002-1195-0944

process engineer, Design Center "Heterogeneous integration"

Russian Federation, Москва

E. N. Rybachek

Scientific-Manufacturing Complex "Technological Centre"

Email: amiro202020@gmail.com
ORCID iD: 0000-0002-3918-4391

Senior Researcher, Cand. of Eng. (Tech. Scien.)

Russian Federation, Зеленоград, Москва

E. M. Yeganova

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: amiro202020@gmail.com
ORCID iD: 0000-0001-6534-4179

Senior Researcher, Cand. of Eng. (Tech. Scien.), Design Center "Heterogeneous integration"

Russian Federation, Москва

D. V. Ryazantsev

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: amiro202020@gmail.com
ORCID iD: 0000-0001-8051-2425

Senior Researcher, Design Center "Heterogeneous integration"

Russian Federation, Москва

N. V. Komarova

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: amiro202020@gmail.com
ORCID iD: 0000-0002-6148-0971

engineer, Cand. of Eng. (Chem. Scien.), Design Center "Heterogeneous integration"

Russian Federation, Москва

A. E. Kuznetsov

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

Email: amiro202020@gmail.com
ORCID iD: 0000-0002-1333-5294

Senior Researcher, Dr. of Eng. (Tech. Scien.), Design Center "Heterogeneous integration"

Russian Federation, Москва

References

  1. Korotcenkov G., Dimitrakis P., Valov I. Metal Oxides for Non-Volatile Memory: Materials, Technology and Applications (Elsevier Metal Oxides series) editors. – AE Amsterdam, Netherlands: Elsevier Inc; 2022. 509 p.
  2. Cypress SONOS Technology (White paper). Infineon SONOS non-volatile memory technology. URL: clck.ru/3ESjc2.
  3. Grajower M, Mazurski N, Shappir J, Levy U. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology. Laser & Photonics Reviews. 2018;12:1700190.
  4. Zhou Y, Han ST, Chen X, Wang F, Tang YB, Roy VAL. An upconverted photonic nonvolatile memory. Nature Communications. 2014 Aug 21;5(1):4720.
  5. Bhattacharyya A. Silicon Based Unified Memory Devices and Technology. Taylor&Francis Group. – Broken Sound Parkway NW: CRC Press; 2017. 545 p.
  6. Dimitrakis P. Charge-Trapping Non-Volatile Memories: Volume 2 – Emerging Materials and Structures. – Springer International Publishing; 2017. 215 p.
  7. Kim S.S, Yong S.K, Kim W, Kang S, Park H.W, Yoon K. J. et al. Review of Semiconductor Flash Memory Devices for Material and Process Issues. Advanced Materials. 2023;35:1–22.
  8. Chen PCY. Threshold-alterable Si-gate MOS devices. IEEE Trans Electron Devices. 1977 May;24(5):584–6.
  9. Wann C, Hu C. High endurance ultra-thin tunnel oxide for dynamic memory application. Electron Devices Meeting, 1988. IEDM ‘88. Technical Digest., International. 1996; 16(11):491–3. doi: 10.1109/IEDM.1995.499354
  10. Libsch F. R., White M. H. Charge transport and storage of low programming voltage SONOS/MONOS memory devices. Solid-State Electronics. 1990;33(1):105–26.
  11. Reinhardt K, Kern W. Handbook of Silicon Wafer Cleaning Technology. Third Edition. William Andrew; 2018. 794 p.
  12. Wu J. L., Kao C. H., Chien H. C., Tsai T. K., Chih Yuan L., Liao C. W. et al. Retention Reliability Improvement of SONOS Non-volatile Memory with N2O Oxidation Tunnel Oxide. Japanese Journal of Applied Physics. 2006 Oct 19;46(10):209–12.
  13. Adams D., Black J., Cunningham G., Lewis R., O’Brien J., Hand B. et al. A 256 kbit (32kx8) EEPROM for >200 °C Applications. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT). 2014;2014(HITEC):000136–41. doi: 10.4071/HITEC-WA11
  14. Wang Y., Zhao Y., Khan B. M., Doherty C. L., Krayer J. D., White M. A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase. Solid-State Electronics. 2004 Oct 1;48:2031–4.
  15. Chiang T. Y., Sheng Y., Wu Y. H., Yang W. High-program/erase-speed SONOS with in situ silicon nanocrystals. Electron Device Letters, IEEE. 2008;29:1148–51.
  16. Choi S., Yang H., Chang M., Baek S., Hwang H., Jeon S. et al. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices. Applied Physics Letters. 2005 Jun 13;86:901–3.
  17. Fujita S., Sasaki A. Dangling Bonds in Memory–Quality Silicon Nitride Films. J. Electrochem Soc. 1985 Feb 1;132(2):398–402.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross-sectional view of flash memory cell structures: а) floating gate memory cell; b) charge trapping memory cell

Download (130KB)
3. Fig.2. Charge trapping memory cell: а)diagram with dielectric gate layer thicknesses and layer material; b) topology of the test structure of the memory cell; c) TEM image of a section of the fabricated structure

Download (627KB)
4. Fig.3. Dependences of threshold voltage on the write and erase voltage

Download (107KB)
5. Fig.4. Dependence of threshold voltage on writing/erasing duration, for determining writing and erasing speed

Download (92KB)

Copyright (c) 2024 Gabdrakhmanov A.E., Rybachek E.N., Yeganova E.M., Ryazantsev D.V., Komarova N.V., Kuznetsov A.E.