Development Of Charge Trapping SONOS Memory Cells
- Authors: Gabdrakhmanov A.E.1, Rybachek E.N.2, Yeganova E.M.1, Ryazantsev D.V.1, Komarova N.V.1, Kuznetsov A.E.1
-
Affiliations:
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
- Scientific-Manufacturing Complex "Technological Centre"
- Issue: Vol 18, No 8 (2024)
- Pages: 598-607
- Section: Photonic Integrated Circuits
- URL: https://journals.eco-vector.com/1993-7296/article/view/646029
- DOI: https://doi.org/10.22184/1993-7296.FROS.2024.18.8.598.607
- ID: 646029
Cite item
Abstract
In this paper, a process for creating a SONOS memory cell with an improved structure within the CMOS route according to 1.5 μm process standards that can be integrated to silicon photonics is proposed. The resulting memory has a write voltage of 12 V and an erase voltage of –13 V. The write speed is 80 ms. The memory window is more than 3 V with a working window of 2 V.
Full Text

About the authors
A. E. Gabdrakhmanov
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Author for correspondence.
Email: amiro202020@gmail.com
ORCID iD: 0009-0002-1195-0944
process engineer, Design Center "Heterogeneous integration"
Russian Federation, МоскваE. N. Rybachek
Scientific-Manufacturing Complex "Technological Centre"
Email: amiro202020@gmail.com
ORCID iD: 0000-0002-3918-4391
Senior Researcher, Cand. of Eng. (Tech. Scien.)
Russian Federation, Зеленоград, МоскваE. M. Yeganova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: amiro202020@gmail.com
ORCID iD: 0000-0001-6534-4179
Senior Researcher, Cand. of Eng. (Tech. Scien.), Design Center "Heterogeneous integration"
Russian Federation, МоскваD. V. Ryazantsev
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: amiro202020@gmail.com
ORCID iD: 0000-0001-8051-2425
Senior Researcher, Design Center "Heterogeneous integration"
Russian Federation, МоскваN. V. Komarova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: amiro202020@gmail.com
ORCID iD: 0000-0002-6148-0971
engineer, Cand. of Eng. (Chem. Scien.), Design Center "Heterogeneous integration"
Russian Federation, МоскваA. E. Kuznetsov
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Email: amiro202020@gmail.com
ORCID iD: 0000-0002-1333-5294
Senior Researcher, Dr. of Eng. (Tech. Scien.), Design Center "Heterogeneous integration"
Russian Federation, МоскваReferences
- Korotcenkov G., Dimitrakis P., Valov I. Metal Oxides for Non-Volatile Memory: Materials, Technology and Applications (Elsevier Metal Oxides series) editors. – AE Amsterdam, Netherlands: Elsevier Inc; 2022. 509 p.
- Cypress SONOS Technology (White paper). Infineon SONOS non-volatile memory technology. URL: clck.ru/3ESjc2.
- Grajower M, Mazurski N, Shappir J, Levy U. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology. Laser & Photonics Reviews. 2018;12:1700190.
- Zhou Y, Han ST, Chen X, Wang F, Tang YB, Roy VAL. An upconverted photonic nonvolatile memory. Nature Communications. 2014 Aug 21;5(1):4720.
- Bhattacharyya A. Silicon Based Unified Memory Devices and Technology. Taylor&Francis Group. – Broken Sound Parkway NW: CRC Press; 2017. 545 p.
- Dimitrakis P. Charge-Trapping Non-Volatile Memories: Volume 2 – Emerging Materials and Structures. – Springer International Publishing; 2017. 215 p.
- Kim S.S, Yong S.K, Kim W, Kang S, Park H.W, Yoon K. J. et al. Review of Semiconductor Flash Memory Devices for Material and Process Issues. Advanced Materials. 2023;35:1–22.
- Chen PCY. Threshold-alterable Si-gate MOS devices. IEEE Trans Electron Devices. 1977 May;24(5):584–6.
- Wann C, Hu C. High endurance ultra-thin tunnel oxide for dynamic memory application. Electron Devices Meeting, 1988. IEDM ‘88. Technical Digest., International. 1996; 16(11):491–3. doi: 10.1109/IEDM.1995.499354
- Libsch F. R., White M. H. Charge transport and storage of low programming voltage SONOS/MONOS memory devices. Solid-State Electronics. 1990;33(1):105–26.
- Reinhardt K, Kern W. Handbook of Silicon Wafer Cleaning Technology. Third Edition. William Andrew; 2018. 794 p.
- Wu J. L., Kao C. H., Chien H. C., Tsai T. K., Chih Yuan L., Liao C. W. et al. Retention Reliability Improvement of SONOS Non-volatile Memory with N2O Oxidation Tunnel Oxide. Japanese Journal of Applied Physics. 2006 Oct 19;46(10):209–12.
- Adams D., Black J., Cunningham G., Lewis R., O’Brien J., Hand B. et al. A 256 kbit (32kx8) EEPROM for >200 °C Applications. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT). 2014;2014(HITEC):000136–41. doi: 10.4071/HITEC-WA11
- Wang Y., Zhao Y., Khan B. M., Doherty C. L., Krayer J. D., White M. A novel SONOS nonvolatile flash memory device using substrate hot-hole injection for write and gate tunneling for erase. Solid-State Electronics. 2004 Oct 1;48:2031–4.
- Chiang T. Y., Sheng Y., Wu Y. H., Yang W. High-program/erase-speed SONOS with in situ silicon nanocrystals. Electron Device Letters, IEEE. 2008;29:1148–51.
- Choi S., Yang H., Chang M., Baek S., Hwang H., Jeon S. et al. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices. Applied Physics Letters. 2005 Jun 13;86:901–3.
- Fujita S., Sasaki A. Dangling Bonds in Memory–Quality Silicon Nitride Films. J. Electrochem Soc. 1985 Feb 1;132(2):398–402.
Supplementary files
