Single photon sources. A review. Part 3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article continues the review of single photon sources while considering various methods for the single photon sources (SPS) development. Earlier, the first part of the review (Photonics Russia. 2024; 18(5): 376–396) discussed the requirements for single-photon sources and their characterization criteria, described the single-ion and single-atom-based single-photon sources. The SPSs based on the quantum dots and color centers in the crystals were considered in the second part of the review (Photonics Russia. 2024; 18(8): 610–620). The third part considers the single-photon sources based on the carbon nanotubes and their defects (defect engineering in the nanotubes), on nanocrystals and layered nanocrystals.

Full Text

Restricted Access

About the authors

V. G. Krishtop

Institute of Microelectronics Technology and High Purity Materials RAS; JSC “InfoTeСS”; Moscow Institute of Physics and Technology

Author for correspondence.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Russian Federation, Chernogolovka, Moscow Region; Moscow; Dolgoprudny, Moscow Region

References

  1. A. Högele, C. Galland, M. Winger, A. Imamoğlu. Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube. Phys. Rev. Lett. 2008; 100(21): 217401. https://doi.org/10.1103/PhysRevLett.100.217401
  2. R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press. London. 1998).
  3. А. В. Сюй, В. И. Строганов, В. В. Криштоп, В. А. Максименко. Оптические свойства наноматериалов. Т. 1. Кристаллы. – под ред. А. В. Сюй – Хабаровск: Изд-во ДВГУПС, 2008.
  4. M. Filchakova, V. Saik. Single-walled carbon nanotubes: structure, properties, applications, and health & safety. 2021; May 13. Tuball.com
  5. P. Avouris, M. Freitag, V. Perebeinos. Carbon-nanotube photonics and optoelectronics. Nature Photonics. 2008–06; 2(6): 341–350. https://doi.org/10.1038/nphoton.2008.94
  6. A. Ishii, T. Uda, Y. K. Kato. Room-temperature single photon emission from micron-long air-suspended carbon nanotubes. Phys. Rev. Applied. 2017;8:054039. https://doi.org/10.1103/PhysRevApplied.8.054039
  7. Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, K. Matsuda. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photonics. 2013;7: 715–719. http://dx.doi.org/10.1038/nphoton.2013.179
  8. H. Zhang, Z. Zhou, J. Qiu, P. Chen, W. Sun. Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study. Composites Communications. 2021; 28:100911. https://doi.org/10.1016/j.coco.2021.100911
  9. A. Thomas, L. Heinemann, A. Ramírez, A. Zehe. Options for the Development of Noninvasive Glucose Monitoring. Journal of Diabetes Science and Technology. 2015;10(3): 782–789. https://doi.org/10.1177/1932296815616133
  10. E. G. Rakov. The chemistry and application of carbon nanotubes. Russian Chemical Reviews, 2001; 70(10): 827–863. https://doi.org/10.1070/rc2001v070n10abeh000660
  11. O. E. Glukhova, A. S. Kolesnikova, G. V. Torgashov, Z. I. Buyanova. Elastic and electrostatic properties of bamboo-shaped carbon nanotubes. Physics of the Solid State. 2010;52(6): 1323–1328. https://doi.org/10.1134/s1063783410060326
  12. Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon, G. C. Schatz, Y. Wang. Brightening of Carbon Nanotube Photoluminescence through the Incorporation of sp3 Defects. Nature Chemistry. 2013;5:840–845. https://doi.org/10.1038/nchem.1711
  13. X. He, N. F. Hartmann, X. Ma, Y. Kim, R. Ihly, J. L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S. K. Doorn. Tunable Room-Temperature Single-Photon Emission at Telecom Wavelengths from sp3 Defects in Carbon Nanotubes. Nature Photonics. 2017; 11: 577. https://doi.org/10.1038/nphoton.2017.119
  14. S. K. Doorn, H. Htoon, H. Kataura, T. Tanaka, A. Hirano. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017; 11(9): 577–582. https://doi.org/10.1038/nphoton.2017.119
  15. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Electrically driven single-photon source at room temperature in diamond. Nature Photonics. 2012:6:299–303. https://doi.org/10.1038/nphoton.2012.75
  16. A. Ishii, T. Uda, Y. K. Kato. Room-temperature single photon emission from micron-long air-suspended carbon nanotubes. Phys. Rev. Applied. 2017;8:054039. https://doi.org/10.1103/PhysRevApplied.8.054039
  17. А. Baydin, F. Tay, J. Fan, M. Manjappa, W. Gao, J. Kono. Carbon Nanotube Devices for Quantum Technology. Materials 2022;15:1535. https://doi.org/10.3390/ma15041535
  18. A. Borel, T. Habrant-Claude, F. Rapisarda, J. Reichel, S. K. Doorn, C. Voisin, Y. Chassagneux. Telecom Band Single-Photon Source Using a Grafted Carbon Nanotube Coupled to a Fiber Fabry–Perot Cavity in the Purcell Regime. ACS Photonics. 2023;10(8):2839–2845. https://doi.org/10.1021/acsphotonics.3c00541
  19. A. Gritsch, L. Weiss, J. Früh, S. Rinner, A. Reiserer. Narrow Optical Transitions in Erbium-Implanted Silicon Waveguides. Phys. Rev. X. 2022;12:041009. https://doi.org/10.1103/PhysRevX.12.041009
  20. A. Gritsch, A. Ulanowski, A. Reiserer. Purcell enhancement of single-photon emitters in silicon. Optica. 2023;10, 783–789. https://doi.org/10.1364/OPTICA.486167
  21. S. Deshpande, J. Heo, A. Das, P. Bhattacharya. Electrically Driven Polarized Single Photon Emission for InGaN Quantum Dot in a Single GaN Nanowire. Nature Communications. 2013; https://doi.org/10.1038/ncomms2691
  22. Q. Q. Dou, A. Rengaramchandran, S. T. Selvan, R. Paulmurugan, Y. Zhang. Core-shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy. Scientific Reports. 2015;5: 8252. https://doi.org/10.1038/srep08252
  23. A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov, M. V. Abrashev, E. Adachi. Photoluminescence depending on the ZnS shell thickness of CdS / ZnS core–shell semiconductor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;245 (1–3): 9–14. https://doi.org/10.1016/j.colsurfa.2004.06.016
  24. P. Reiss, M. Protière, L. Li. Core/Shell Semiconductor Nanocrystals. Small. 2009;5(2): 154–168. https://doi.org/10.1002/smll.200800841
  25. X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society. 1997;119(30): 7019–7029. https://doi.org/10.1021/ja970754m
  26. V. Sayevich, Z. Robinson, Y. Kim, O. Kozlov, H. Jung, T. Nakotte, Y.-S. Park, V. Klimov. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nature Nanotechnology. 2021;16:1–7. https://doi.org/10.1038/s41565-021-00871-x
  27. M. Metlin, S. Ambrozevich, V. Korshunov, V. Fedyanin, P. Tananaev, I. Taydakov. Near-infrared single-photon emitters based on colloidal CdSe/CdS/ZnS nanocrystals and Nd(III) 1,3-diketonate. Opt. Lett. 2020;45: 5480–5483. https://doi.org/10.1364/OL.401227

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 13. Schematic models of single-walled and multi-walled carbon nanotubes [141]

Download (301KB)
3. Fig. 14. Nanotubes with various chirality [142, 143]

Download (945KB)
4. Fig. 15. Recombination of an exciton at a zero-dimentional state and recombination of two excitons with the single photon emission [145, 146]

Download (353KB)
5. Fig. 16. Stone-Wales defect [148] and elbow defect [149]; bamboo-like structures [150]

Download (721KB)
6. Fig. 17. Hybridization of atomic orbitals of carbon [150]

Download (491KB)
7. Fig. 18. Defects of unsaturated (dangling) bonds. Various configurations of nitrogen-carbon compounds in the graphene lattice (gray circles – carbon atoms; blue circles – nitrogen atoms; red circles – oxygen atoms; white circles – hydrogen atoms (source: Rusgraphen, rusgraphen.ru)

Download (305KB)
8. Fig. 19. Optical resonator cavity for quantum networks based on silicon doped with the erbium atoms: instead of the mirrors, the resonator uses a regular structure of nanometer-sized holes in the crystalline silicon; the erbium atoms placed in the silicon crystal emit at a wavelength of 1 536 nm (using such resonators, it is possible to generate single photons with the specified properties) [158, 159]

Download (175KB)
9. Fig. 20. Single-photon emitter with the linear polarization and electrical pumping – a gallium nitride nanowire with indium gallium nitride quantum dot [160]

Download (561KB)
10. Fig. 21. Quantum dots with a core of cadmium selenide, an interlayer of mercury sulfi de in the shell of cadmium sulfide: CdSe / HgS / CdS [165]

Download (194KB)
11. Fig. 22. Room-temperature light emission from individual CdSe/HgS/CdS colloidal quantum dots. A time-dependent second-order photoluminescence intensity correlation function measured with low-intensity pulsed excitation, indicates a nearly ideal photon antibunching with g(2)(0) = 0.04 [165]

Download (133KB)

Copyright (c) 2025 Krishtop V.G.