Single photon sources. A review. Part 3
- Authors: Krishtop V.G.1,2,3
-
Affiliations:
- Institute of Microelectronics Technology and High Purity Materials RAS
- JSC “InfoTeСS”
- Moscow Institute of Physics and Technology
- Issue: Vol 19, No 1 (2025)
- Pages: 28-38
- Section: Quantum Technologies
- URL: https://journals.eco-vector.com/1993-7296/article/view/679074
- DOI: https://doi.org/10.22184/1993-7296.FRos.2025.19.1.28.38
- ID: 679074
Cite item
Abstract
The article continues the review of single photon sources while considering various methods for the single photon sources (SPS) development. Earlier, the first part of the review (Photonics Russia. 2024; 18(5): 376–396) discussed the requirements for single-photon sources and their characterization criteria, described the single-ion and single-atom-based single-photon sources. The SPSs based on the quantum dots and color centers in the crystals were considered in the second part of the review (Photonics Russia. 2024; 18(8): 610–620). The third part considers the single-photon sources based on the carbon nanotubes and their defects (defect engineering in the nanotubes), on nanocrystals and layered nanocrystals.
Full Text

About the authors
V. G. Krishtop
Institute of Microelectronics Technology and High Purity Materials RAS; JSC “InfoTeСS”; Moscow Institute of Physics and Technology
Author for correspondence.
Email: vladimir.krishtop@infotecs.ru
ORCID iD: 0000-0001-6063-2657
Russian Federation, Chernogolovka, Moscow Region; Moscow; Dolgoprudny, Moscow Region
References
- A. Högele, C. Galland, M. Winger, A. Imamoğlu. Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube. Phys. Rev. Lett. 2008; 100(21): 217401. https://doi.org/10.1103/PhysRevLett.100.217401
- R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press. London. 1998).
- А. В. Сюй, В. И. Строганов, В. В. Криштоп, В. А. Максименко. Оптические свойства наноматериалов. Т. 1. Кристаллы. – под ред. А. В. Сюй – Хабаровск: Изд-во ДВГУПС, 2008.
- M. Filchakova, V. Saik. Single-walled carbon nanotubes: structure, properties, applications, and health & safety. 2021; May 13. Tuball.com
- P. Avouris, M. Freitag, V. Perebeinos. Carbon-nanotube photonics and optoelectronics. Nature Photonics. 2008–06; 2(6): 341–350. https://doi.org/10.1038/nphoton.2008.94
- A. Ishii, T. Uda, Y. K. Kato. Room-temperature single photon emission from micron-long air-suspended carbon nanotubes. Phys. Rev. Applied. 2017;8:054039. https://doi.org/10.1103/PhysRevApplied.8.054039
- Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, K. Matsuda. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photonics. 2013;7: 715–719. http://dx.doi.org/10.1038/nphoton.2013.179
- H. Zhang, Z. Zhou, J. Qiu, P. Chen, W. Sun. Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study. Composites Communications. 2021; 28:100911. https://doi.org/10.1016/j.coco.2021.100911
- A. Thomas, L. Heinemann, A. Ramírez, A. Zehe. Options for the Development of Noninvasive Glucose Monitoring. Journal of Diabetes Science and Technology. 2015;10(3): 782–789. https://doi.org/10.1177/1932296815616133
- E. G. Rakov. The chemistry and application of carbon nanotubes. Russian Chemical Reviews, 2001; 70(10): 827–863. https://doi.org/10.1070/rc2001v070n10abeh000660
- O. E. Glukhova, A. S. Kolesnikova, G. V. Torgashov, Z. I. Buyanova. Elastic and electrostatic properties of bamboo-shaped carbon nanotubes. Physics of the Solid State. 2010;52(6): 1323–1328. https://doi.org/10.1134/s1063783410060326
- Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon, G. C. Schatz, Y. Wang. Brightening of Carbon Nanotube Photoluminescence through the Incorporation of sp3 Defects. Nature Chemistry. 2013;5:840–845. https://doi.org/10.1038/nchem.1711
- X. He, N. F. Hartmann, X. Ma, Y. Kim, R. Ihly, J. L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S. K. Doorn. Tunable Room-Temperature Single-Photon Emission at Telecom Wavelengths from sp3 Defects in Carbon Nanotubes. Nature Photonics. 2017; 11: 577. https://doi.org/10.1038/nphoton.2017.119
- S. K. Doorn, H. Htoon, H. Kataura, T. Tanaka, A. Hirano. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017; 11(9): 577–582. https://doi.org/10.1038/nphoton.2017.119
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Electrically driven single-photon source at room temperature in diamond. Nature Photonics. 2012:6:299–303. https://doi.org/10.1038/nphoton.2012.75
- A. Ishii, T. Uda, Y. K. Kato. Room-temperature single photon emission from micron-long air-suspended carbon nanotubes. Phys. Rev. Applied. 2017;8:054039. https://doi.org/10.1103/PhysRevApplied.8.054039
- А. Baydin, F. Tay, J. Fan, M. Manjappa, W. Gao, J. Kono. Carbon Nanotube Devices for Quantum Technology. Materials 2022;15:1535. https://doi.org/10.3390/ma15041535
- A. Borel, T. Habrant-Claude, F. Rapisarda, J. Reichel, S. K. Doorn, C. Voisin, Y. Chassagneux. Telecom Band Single-Photon Source Using a Grafted Carbon Nanotube Coupled to a Fiber Fabry–Perot Cavity in the Purcell Regime. ACS Photonics. 2023;10(8):2839–2845. https://doi.org/10.1021/acsphotonics.3c00541
- A. Gritsch, L. Weiss, J. Früh, S. Rinner, A. Reiserer. Narrow Optical Transitions in Erbium-Implanted Silicon Waveguides. Phys. Rev. X. 2022;12:041009. https://doi.org/10.1103/PhysRevX.12.041009
- A. Gritsch, A. Ulanowski, A. Reiserer. Purcell enhancement of single-photon emitters in silicon. Optica. 2023;10, 783–789. https://doi.org/10.1364/OPTICA.486167
- S. Deshpande, J. Heo, A. Das, P. Bhattacharya. Electrically Driven Polarized Single Photon Emission for InGaN Quantum Dot in a Single GaN Nanowire. Nature Communications. 2013; https://doi.org/10.1038/ncomms2691
- Q. Q. Dou, A. Rengaramchandran, S. T. Selvan, R. Paulmurugan, Y. Zhang. Core-shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy. Scientific Reports. 2015;5: 8252. https://doi.org/10.1038/srep08252
- A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov, M. V. Abrashev, E. Adachi. Photoluminescence depending on the ZnS shell thickness of CdS / ZnS core–shell semiconductor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004;245 (1–3): 9–14. https://doi.org/10.1016/j.colsurfa.2004.06.016
- P. Reiss, M. Protière, L. Li. Core/Shell Semiconductor Nanocrystals. Small. 2009;5(2): 154–168. https://doi.org/10.1002/smll.200800841
- X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society. 1997;119(30): 7019–7029. https://doi.org/10.1021/ja970754m
- V. Sayevich, Z. Robinson, Y. Kim, O. Kozlov, H. Jung, T. Nakotte, Y.-S. Park, V. Klimov. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nature Nanotechnology. 2021;16:1–7. https://doi.org/10.1038/s41565-021-00871-x
- M. Metlin, S. Ambrozevich, V. Korshunov, V. Fedyanin, P. Tananaev, I. Taydakov. Near-infrared single-photon emitters based on colloidal CdSe/CdS/ZnS nanocrystals and Nd(III) 1,3-diketonate. Opt. Lett. 2020;45: 5480–5483. https://doi.org/10.1364/OL.401227
Supplementary files
