Optical properties of the bacteriochlorophyll a within the B800 part of Rhodoblastus Acidophilus light-harvesting complex studied via time-dependent density functional theory-based calculations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Time-dependent density functional theory-based approaches, TD-DFT and TD-DFTB, are used to study the optical absorption of B800 part of light-harvesting complex 2 (LH2) of Rhodoblastus acidophilus. Calculated spectra for both single molecule and the optimized structure of B800 complex containing nine of such molecules are in qualitative agreement with experimental data. The absence of any sizable effects originating from the interaction between adjacent molecules are proved. Thus, optical features of B800 LH2 part are not connected to the structural organization of pigments. The importance of the time-dependent procedure for the correct description of BChl a absorption spectrum is demonstrated.

Full Text

Restricted Access

About the authors

Evgeniya A. Kovaleva

Federal Research Center Krasnoyarsk Science Center SB RAS

Author for correspondence.
Email: kovaleva.evgeniya1991@mail.ru
ORCID iD: 0000-0002-8008-0906

Cand. of Sciences (Phys.&Math), Senior Researcher

Russian Federation, Krasnoyarsk

Lyudmila V. Begunovich

Federal Research Center Krasnoyarsk Science Center SB RAS

Email: lyuda.illuzia@gmail.com
ORCID iD: 0000-0002-8103-1823

Cand. of Sciences (Phys.&Math), Researcher

Russian Federation, Krasnoyarsk

Maxim M. Korshunov

Federal Research Center Krasnoyarsk Science Center SB RAS

Email: mkor@iph.krasn.ru
ORCID iD: 0000-0001-9355-2872

Dr. of Sciences (Phys.&Math), Corr. Member of the RAS; Chief Researcher, L. V. Kirensky Institute of Physics of the RAS – a separate unit of the FITC KSC SB RAS; Deputy Scientific Director of the Federal Research Center Krasnoyarsk Scientific Center SB RAS

Russian Federation, Krasnoyarsk

References

  1. Curutchet C., Mennucci B. Quantum chemical studies of light harvesting. Chem. Rev. 2017; 117: 294–343. https://doi.org/10.1021/acs.chemrev.5b00700.
  2. Mirkovic T., Ostroumov E. E., Anna J. M., van Grondelle R., Govindjee, Scholes G. D. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem. Rev. 2017; 117: 249–93. https://doi.org/10.1021/acs.chemrev.6b00002.
  3. Gudkov S. V., Sarimov R. M., Astashev M. E., Pishchalnikov R.Yu., Yanykin D. V., Simakin A. V., et al. Modern physical methods and technologies in agriculture. Uspekhi Fizicheskih Nauk. 2024; 194: 208–26. https://doi.org/10.3367/UFNr.2023.09.039577.
  4. Maity S., Kleinekathöfer U. Recent progress in atomistic modeling of light-harvesting complexes: a mini review. Photosynth. Res. 2023; 156: 147–62. https://doi.org/10.1007/s11120-022-00969-w.
  5. Saga Y., Tanaka A., Yamashita M., Shinoda T., Tomo T., Kimura Y. Spectral Properties of Chlorophyll f in the B800 Cavity of Light-harvesting Complex 2 from the Purple Photosynthetic Bacterium Rhodoblastus acidophilus. Photochem. Photobiol. 2022; 98: 169–74. https://doi.org/10.1111/php.13491.
  6. Qian P., Swainsbury D. J.K., Croll T. I., Castro-Hartmann P., Divitini G., Sader K., et al. Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å. Biochemistry. 2021; 60: 3302–14. https://doi.org/10.1021/acs.biochem.1c00576.
  7. Bose A., Makri N. All-Mode Quantum–Classical Path Integral Simulation of Bacteriochlorophyll Dimer Exciton-Vibration Dynamics. J. Phys. Chem. B. 2020; 124: 5028–38. https://doi.org/10.1021/acs.jpcb.0c03032.
  8. Cupellini L., Qian P., Nguyen-Phan T.C., Gardiner A. T., Cogdell R. J. Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex. Photosynth. Res. 2023; 156: 75–87. https://doi.org/10.1007/s11120-022-00925-8.
  9. Begunovich L. V., Kovaleva E. A., Korshunov M. M., Shabanov V. F. Absorption spectra of the purple nonsulfur bacteria light-harvesting complex: A DFT study of the B800 part. J. Photochem. Photobiol. A Chem. 2024; 450: 115454. https://doi.org/10.1016/j.jphotochem.2023.115454.
  10. Fujimoto K. J., Minoda T., Yanai T. Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model. J. Phys. Chem. B. 2021; 125: 10459–70. https://doi.org/10.1021/acs.jpcb.1c04457.
  11. RCSB PDB – 2FKW: Structure of LH2 from Rps. acidophila crystallized in lipidic mesophases n. d. https://www.rcsb.org/structure/2FKW (accessed September 26, 2023).
  12. Bonafé F. P., Aradi B., Hourahine B., Medrano C. R., Hernández F. J., Frauenheim T., et al. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J. Chem. Theory Comput. 2020; 16: 4454–69. https://doi.org/10.1021/acs.jctc.9b01217.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Absorption spectra for BChl a molecule and B800 ring from ED-DFTB calculations

Download (101KB)
3. Fig. 2. Absorption spectra for BChl a molecule calculated using either DFTB (a) or HSE06 (b) method for electronic structure calculation

Download (225KB)
4. Fig. 3. Absorption spectra for BChl a molecule and B800 ring obtained from DFTB3 and HSE06 calculations by solving the Casida equation

Download (131KB)

Copyright (c) 2025 Kovaleva E.A., Begunovich L.V., Korshunov M.M.