Development of the Cycloadaptive Lighting Mode to Increase the Lactuca sativa L. Yield

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In order to increase plant yield and reduce radiation sources energy consumption, we introduce the concept of the cycloadaptive photomode (CAPM), which adapts to the plant development substages (steps), dynamically changes lighting parameters to optimize their growth and development, and promotes increased photosynthetic pigments synthesis. Based on the results of assessing the spectral composition of LED devices effect on the Lactuca sativa L. development, it was determined that the light-emitting device based on the automated change in the spectral composition of radiation and the photosynthetic photon flux depending density on the stage of plant development in accordance with the cycloadaptive lighting mode leads to increase Lactuca sativa L. yield by 2 times, as well as a decrease in the amount of water used to form 1 g of dry matter by 2.5 times compared to natural lighting.

Full Text

Restricted Access

About the authors

Maria M. Degtereva

LETI Saint Petersburg Electrotechnical University

Author for correspondence.
Email: mmromanovich@etu.ru
ORCID iD: 0000-0001-6797-0595

Assistant of the Department of Photonics

Russian Federation, Saint Petersburg

Evgeny V. Levin

LETI Saint Petersburg Electrotechnical University

Email: e_levin@etu.ru
ORCID iD: 0009-0000-3811-487X

2nd-Year Postgraduate Student

Russian Federation, Saint Petersburg

Alexander E. Degterev

LETI Saint Petersburg Electrotechnical University

Email: aedegterev@etu.ru
ORCID iD: 0000-0002-6151-6567

Assistant of the Department of Photonics

Russian Federation, Saint Petersburg

Ivan A. Lamkin

LETI Saint Petersburg Electrotechnical University

Email: ialamkin@etu.ru
ORCID iD: 0000-0002-3680-7725

Cand. of Sciences (Tech.), Associate Professor at the Department of Photonics

Russian Federation, Saint Petersburg

Sergey A. Tarasov

LETI Saint Petersburg Electrotechnical University

Email: satarasov@etu.ru
ORCID iD: 0000-0002-6321-0019

Dr. of Sciences (Tech.), Head of the Department of Photonics

Russian Federation, Saint Petersburg

References

  1. Al Murad M. et al. Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability. 2021; 13(4): 1985. https://doi.org/10.3390/su13041985
  2. Hernández R., Kubota C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot. 2016; 121: 66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001
  3. Sipos L. et al. Optimization of basil (Ocimum basilicum L.) production in LED light environments – a review. Sci Hortic. 2021; 289: 110486. https://doi.org/10.1016/j.scienta.2021.110486
  4. Viršilė A. et al. The Comparison of Constant and Dynamic Red and Blue Light Irradiation Effects on Red and Green Leaf Lettuce. Agronomy. 2020; 10(11): 1802. https://doi.org/10.3390/agronomy10111802
  5. Kamath D. et al. Dynamic versus Concurrent Lighting with Red and Blue Light-emitting Diodes as the Sole Light Source Can Potentially Improve Campanula Stock Plant Morphology for Cutting Production. HortScience. 2021; 56(11): 1439–1445. https://doi.org/10.21273/HORTSCI16034-21
  6. Nakonechnaya O. V. et al. In vitro potato plantlet development under different polychromatic LED spectra and dynamic illumination. Botanica Pacifica. 2021. https://doi.org/10.17581/bp.2021.10102
  7. Degtereva M. et al. Influence of the Spectral Composition of Illuminating Light Sources on Biometric and Phytochemical Characteristics of Ocimum basilicum L. Photonics. 2023; 10(12): 1369. https://doi.org/10.3390/photonics10121369
  8. Moustakas M., Calatayud Á., Guidi L. Editorial: Chlorophyll Fluorescence Imaging Analysis in Biotic and Abiotic Stress. Frontiers in Plant Science. Frontiers Media S. A. 2021; 12. https://doi.org/10.3389/fpls.2021.658500
  9. Solbach J.A., Fricke A., Stützel H. Compensation of adverse growing media effects on plant growth and morphology by supplemental LED lighting. PLoS One. Public Library of Science. 2023; 18(9). https://doi.org/10.1371/journal.pone.0291601
  10. Tabbert J.M., Schulz H., Krähmer A. Increased Plant Quality, Greenhouse Productivity and Energy Efficiency with Broad-Spectrum LED Systems: A Case Study for Thyme (Thymus vulgaris L.). Plants. 2021; 10(5): 960. https://doi.org/10.3390/plants10050960
  11. Hooks T. et al. Adding UVA and Far-Red Light to White LED Affects Growth, Morphology, and Phytochemicals of Indoor-Grown Microgreens. Sustainability. 2022; 14(14): 8552. https://doi.org/10.3390/su14148552
  12. Gao S. et al. Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC Plant Biol. 2020; 20(1):78. https://doi.org/10.1186/s12870-020-2282-0
  13. Meng Q., Runkle E. S. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci Hortic. 2019; 255: 269–280. https://doi.org/10.1016/j.scienta.2019.05.030
  14. Degtereva M.M. et al. Assessment Procedure for the Advantages of LED Phyto-Strip Application in the Industrial Greenhouse Complexes. Photonics Russia. 2023; 17(7): 566–578. https://doi.org/10.22184/1993-7296.FRos.2023.17.7.566.578 Дегтерева М. М. и др. Методика оценки преимуществ применения светодиодной фитоленты в промышленных тепличных комплексах. Фотоника. 2023; 17(7): 566–578. https://doi.org/10.22184/1993-7296.FRos.2023.17.7.566.578
  15. GOST R 57671-2017. Irradiation devices with LED light sources for greenhouses. General specifications: GOST R 57671-2017. Russia: National Standard of the Russian Federation, 2017; 8. (In Russ.) ГОСТ Р 57671-2017. Приборы облучательные со светодиодными источниками света для теплиц. Общие технические условия: ГОСТ Р 57671-2017. Россия: Национальный стандарт Российской Федерации, 2017; 8.
  16. Luo X. et al. Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content. Glob Chang Biol. 2019; 25(7): 2499–2514. https://doi.org/10.1111/gcb.14624

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Volt-ampere (a), watt-ampere (b) characteristics and LED efficiency (c)

Download (401KB)
3. Fig. 2. LED PPFD dependences on current at a distance of 19 cm (a) and on distance at operating currents (b)

Download (220KB)
4. Fig. 3. PPFD distribution map on the irradiated surface at distances from the radiation source to the receiver of 19 cm (a), 40 cm (b), 60 cm (c)

Download (264KB)
5. Fig. 4. Plant yield (a) and transpiration coefficient (b) of Lactuca sativa L. (Vyuga variety) on the 35th day of growth under different lighting modes (p < 0.05). Asterisks indicate the level of significance of differences in yield for different light sources and natural light (*p < 0.03; **p < 0.001)

Download (286KB)
6. Fig. 5. Сhlorophyll a, chlorophyll b, total carotenoids сontent in Lactuca sativa L. samples on the 35th day (**p < 0.001)

Download (166KB)
7. Fig. 6. Dependence of crop yield on the content of chlorophyll a (a), chlorophyll b (b) and carotenoids (c) in Lactuca sativa L.

Download (315KB)

Copyright (c) 2025 Degtereva M.M., Levin E.V., Degterev A.E., Lamkin I.A., Tarasov S.A.