Methane in massive ice beds in Eastern Chukotka as an indicator of their origin

Cover Page

Cite item

Full Text

Abstract

The study of massive ices is of interest both for the purposes of paleogeographic reconstructions, and for solving engineering and geocryological problems. Despite the widespread distribution of massive ice beds in the cryolithozone, the problem of spatial identification of them and mapping has not yet been resolved, which is mainly due to the difficulty of determining and understanding the processes of their formation. The paper presents the results of studying the methane content as a genetic trait in massive ice beds along the coast of Eastern Chukotka. In 2016–2022, our team studied variations in the methane content in 4 massive ice beds and host deposits using the “headspace” method. The CH4 concentration in ice and air bubbles ranged from 1 to 1582 ppmv, which made it possible to suggest the genesis of each bed and compare it with previously proposed hypotheses of their formation based on the earlier made cryolithological and oxygen isotope analyses. The study has confirmed the intra-ground (median methane concentration of 432 ppmv) and buried (2 ppmv) genesis for two beds. For the third one, the issue of its genesis remained debatable, and in the fourth bed, the obtained results have thrown doubt on the previous hypothesis about the intra-ground genesis of ice, since the recorded methane concentration was found to be close to the atmospheric one. Despite the limitations of the “headspace” method shown in the paper, it was manifested as the adequate way for the field studies when transportation of frozen samples to the laboratory is impossible.

About the authors

L. P. Кuziakin

Lomonosov Moscow State University

Author for correspondence.
Email: kuziakin@geogr.msu.ru
Russian Federation, Moscow

A. A. Maslakova

Lomonosov Moscow State University

Email: kuziakin@geogr.msu.ru
Russian Federation, Moscow

P. B. Semenov

All-Russian Research Institute of Geology and Mineral Resources of the World Ocean (FSUE “VNIIOkeangeologia named after academician I.S. Gramberg”)

Email: kuziakin@geogr.msu.ru
Russian Federation, Saint-Petersburg

N. G. Belova

Lomonosov Moscow State University

Email: kuziakin@geogr.msu.ru
Russian Federation, Moscow

Yu. K. Vasil’chuk

Lomonosov Moscow State University

Email: kuziakin@geogr.msu.ru
Russian Federation, Moscow

A. O. Kil

All-Russian Research Institute of Geology and Mineral Resources of the World Ocean (FSUE “VNIIOkeangeologia named after academician I.S. Gramberg”)

Email: kuziakin@geogr.msu.ru
Russian Federation, Saint-Petersburg

References

  1. Belova N.G., Maslakov A.A., Baranskaya A.V., Romanenko F.A. Methan in the massive ice on the East Chukotka. Vzaimodeistvie elementov prirodnoi sredy v vysokoshirotnykh usloviyakh. Interaction of elements of the natural environment in high latitude conditions. 2019: 50–50. [In Russian].
  2. Bulygina O.N., Razuvaev V.N., Trofimenko L.T., Shvets N.V. Description of the data array of mean monthly air temperature at stations in Russia. Certificate of state registration of the database No. 201462. Retrieved from: http://meteo.ru/data/156-temperature (Last access: 25 November 2023). [In Russian].
  3. Butakov V.I., Slagoda E.A., Tikhonravova Y.V. Content and composition of atmospheric and greenhouse gases in underground ice of different origins. Izvestiya Tomskogo polytechnicheskogo universiteta. Inzhiniring georesursov. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, 332: 22–36. [In Russian].
  4. Vasiliev A.A., Streletskaya I.D., Mel’nikov V.P., Oblogov G.E. Methane in ground ice and frozen Quaternary deposits of Western Yamal. Doklady Akademii nauk. Doklady Earth Sciences. 2015, 465 (5): 604–607. https:// doi.org/10.7868/S0869565215350236. [In Russian].
  5. Vasil’chuk, Y.K. Geochemical composition of ground ice in the Russian Arctic. Arctica i Antarctica. Arctic and Antarctic. 2016, 2: 99–115. https://doi.org/10.7256/2453-8922.2016.2.21378. [In Russian].
  6. Vasil’chuk Yu.K., Budantseva N.A., Vasil’chuk A.C., Maslakov A.A., Chizhova Ju.N. Oxygen isotope composition of Holocene ice wedges of Eastern Chukotka. Doklady Akademii nauk. Doklady Earth Sciences. 2018, 480 (2): 759–763. https://doi.org/10.1134/S1028334X18060107 [In Russian].
  7. Vasil’chuk Yu.K., Chizhova Ju.N., Maslakov A.A., Budantseva N.A., Vasil’chuk A.C. Oxygen and hydrogen isotope variations in a recently formed massive ice at the mouth of the Akkani River, Eastern Chukotka. Led i Sneg. Ice and Snow. 2018, 58 (1): 78–93. https:// doi.org/10.15356/2076-6734-2018-1-78-93 [In Russian].
  8. Vasil’chuk Yu.K. Izotopnye metody v geografii. Chast’ 2. Geokhimiya stabil’nykh izotopov plastovyh l’dov. Tom 1. Isotope Ratios in the Environment. Part 2: Stable isotope geochemistry of massive ice. Vol. 1. Moscow: Moscow University Press, 2012: 472 p. [In Russian].
  9. Vturin B.I. Podzemnye l’dy SSSR. Underground ice of the USSR. Moscow: Nauka, 1975: 214 p. [In Russian].
  10. Gasanov S.S. Stroenie i istoria formirovania m’orzlych porod Vostochnoy Chukotki. The structure and history of the formation of frozen rocks in Eastern Chukotka. Moscow: Nauka, 1969: 169 p. [In Russian].
  11. Kolesnikov S.F., Plakht I.R. Chukotka Area. Regional’naya Kriolitologiya. Regional Cryolithology. Ed. A.I. Popov. Moscow: MSU, 1989: 201–217. [In Russian].
  12. Maslakov A.A., Belova N.G., Baranskaya A.V., Romanenko F.A. The embedded ice of the eastern Chukotka Peninsula coast in conditions of climate warming: some results of expeditions in 2014–2018. Arktika i Antarktika. Arctic and Antarctic. 2018, 74: 30–43. https://doi.org/10.7256/2453-8922.2018.4.28528 [In Russian].
  13. Maslakov A.A., Kuziakin L.P., Komova N.N. Dynamics of development of a thermal cirque containing a massive ice near the village of Lavrentiya (Chukotka Autonomous Okrug) for 2018-2021. Arctika i Antarktika. Arctic and Antarctic. 2021, 4: 32–46. https:// doi.org/10.7256/2453-8922.2021.4.37225 [In Russian].
  14. Svitoch A.A. Noveyshie otlozhenia i paleogeografia pleistotsena Chukotki. Recent deposits and Pleistocene paleogeography of Chukotka. Moscow: Nauka, 1980: 205 p. [In Russian].
  15. Rivkina Ye.M., Krayev G.N., Krivushin K.V., Laurinavichyus K.S., Fedorov-Davydov D.G., Kholodov A.L., Shcherbakova V.A., Gilichinskiy D.A. Methane in the permafrost deposits of the northeastern sector of the Arctic. Kriosfera Zemli. Cryosphere of the Earth. 2006, 10 (3): 23–41. [In Russian].
  16. Semenov P.B. Malyshev S.V., Kil A.O., Shatrova E.V., Lodochnikova A.S., Belova N.G., Leibman M.O., Streletskaya I.D. Geochemistry of ground ice in the Russian Arctic with a focus on the carbon cycle explorative statistics results. Relief i chetvertichnye obrazovania Arktiki, Subarktiki i Severo-Zapada Rossii. Materialy ezhegodnoy konferentsii po resultatam expedicionnych issledovaniy. Vypusk 10. Otv. red. E.A. Gusev. Sankt-Peterburg. Relief and Quaternary deposits of the Arctic, Subarctic and North-West Russia. Proceedings of the annual conference on the results of expedition research. Issue 10. Gusev E.A. St. Petersburg. 2023: 245–254. https://doi.org/10.24412/2687-1092-2023-10-245-254 [In Russian].
  17. Streletskaya I.D., Vasil’ev A.A., Oblogov G.E., Semenov P.B., Vanshtein B.G., Rivkina E.M. Methane in underground ice and frozen sediments on the coast and shelf of the Kara Sea. Led i Sneg. Ice and Snow. 2018, 58 (1): 65–77. https://doi.org/10.15356/2076-6734-2018-1-65-77 [In Russian].
  18. Cherbunina M.Y., Shmelev D.G., Krivenok L.A. The effect of degassing method of frozen soils on the test results of methane concentration. Inzhenernaya geologia. Engineering Geology. 2018, 13 (3): 62–73. [In Russian].
  19. Arkhangelov, A.A., Novgorodova, E.V. Genesis of massive ice at “Ice Mountains”, Yenesei River, Western Siberia, according to results of gas analyses. Permafrost and Periglacial Processes. 1991, 2: 167–170. https://doi.org/10.1002/ppp.3430020210
  20. Alperin M.J., Reeburgh W.S. Inhibition experiments on anaerobic methane oxidation. Applied Environmetal. Microbiology. 1985, 50: 940–945.
  21. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World Map of the Köppen‐Geiger Climate Classification Updated. Meteorologische Zeitschrift. 2006, 15: 259–263.
  22. Kraev G., Schulze E.D., Yurova A., Kholodov A., Chuvilin E., Rivkina E. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere. 2017, 8 (6): 105.
  23. Maslakov A., Zotova L., Komova N., Grishchenko M., Zamolodchikov D., Zelensky G. Vulnerability of the permafrost landscapes in the Eastern Chukotka coastal plains to human impact and climate change. Land. 2012, 10 (5): 445. https://doi.org/10.3390/land10050445
  24. Obu J., Westermann S., Bartsch A., Berdnikov N., Christiansen H. H., Dashtseren A., Delaloye R., Elberling B., Etzelmüller B., Kholodov A., Khomutov A. Northern Hemisphere permafrost map based on TTOP modelling for 2000– 2016 at 1 km2 scale. Earth-Science Reviews. 2019, 193: 299–316.
  25. Raynaud D. The integrity of the ice record of green-house gases with a special focus on atmospheric. Ice and snow. 2012, 2 (118): 5–14.
  26. Semenov P., Pismeniuk A., Kil A., Shatrova E., Belova N., Gromov P., Malyshev S., He W., Lodochnikova A., Tarasevich I., Streletskaya I., Leibman M. Characterizing Dissolved Organic Matter and Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Sample Classification within the Carbon Cycle Context. Geosciences 2024, 14: 77. https://doi.org/10.3390/ geosciences1403007
  27. Semenov P.B., Pismeniuk A.A., Malyshev S.A., Leibman M.O., Streletskaya I.D., Shatrova E.V., Kizyakov A.I., Vanshtein B.G. Methane and dissolved organic matter in the ground ice samples from Central Yamal: Implications to biogeochemical cycling and greenhouse gas emission. Geosciences 2020, 10: 450. https://doi.org/10.3390/geosciences10110450
  28. Vasil’chuk Yu.K., Maslakov A.A., Budantseva N.A., Vasil’chuk A.C., Komova N.N. Isotope Signature of the Massive Ice Bodies on the Northeast Coast Of Chukotka Peninsula. Geography, Environment, Sustainability. 2021, 14 (4): 9–19. https://doi.org/10.24057/2071-9388-2021-020
  29. Vasil’chuk Yu.K., Budantseva N.A., Maslakov A.A., Vasil’chuk A.C., Vasil’chuk J.Yu. First direct radiocarbon dating (22-27 cal Ka BP) of massive ice at the Mechigmen and Lavrentia Bay coast, Eastern Chukotka. Radiocarbon. 2024, 66, 2: 410–420. https:// doi.org/10.1017/RDC.2024.21
  30. Yang J.-W., Ahn J., Iwahana G., Han S., Kim K., Fedorov A. Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges. The Cryosphere. 2020, 14: 1311–1324. https://doi.org/10.5194/tc-14-1311-2020

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.