Моделирование снежного покрова на ледниках Кавказа и Камчатки

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проведена валидация модельного комплекса из SNOWPACK и орографической модели осадков с данными реанализа для вулканов Эльбрус и Ушковский. В сравнении с ледниковым керном показано, что модельный комплекс может применяться для воспроизведения структуры снежной толщи, а также снегонакопления на длительных временных масштабах. Проанализировано изменение типа льдообразования на вулкане Ушковский за последние 40 лет.

Полный текст

Доступ закрыт

Об авторах

И. М. Сушинцев

Институт географии РАН; Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: sushintsev@yahoo.com
Россия, Москва; Москва

Е. Д. Дроздов

Институт географии РАН; Московский государственный университет имени М.В. Ломоносова

Email: sushintsev@yahoo.com
Россия, Москва; Москва

П. А. Торопов

Институт географии РАН; Московский государственный университет имени М.В. Ломоносова

Email: sushintsev@yahoo.com
Россия, Москва; Москва

В. Н. Михаленко

Институт географии РАН

Email: sushintsev@yahoo.com
Россия, Москва

М. А. Воробьев

Институт географии РАН

Email: sushintsev@yahoo.com
Россия, Москва

А. Г. Хайрединова

Институт географии РАН

Email: sushintsev@yahoo.com
Россия, Москва

Список литературы

  1. Дроздов Е.Д., Торопов П.А., Авилов В.К., Артамонов А.Ю., Полюхов А.А., Железнова И.В., Ярынич Ю.И. Метеорологический режим высокогорной зоны Эльбруса в период аккумуляции // Лёд и Снег. 2024. Т. 64 (1). С. 25–40. https://doi.org/10.31857/S2076673424010022
  2. Котляков В.М. Снежный покров Антарктиды и его роль в современном оледенении материка. М.: Изд-во Академии наук СССР, 1961. 246 с.
  3. Кренке А.Н. Зоны льдообразования на ледниках // Геофизический бюллетень. Вып. 25. М.: Наука, 1973. С. 44–56.
  4. Ледники и климат Эльбруса / Отв. ред. В.Н. Михаленко. М.–СПб.: Нестор-История, 2020. 372 с.
  5. Муравьев Я.Д., Саламатин А.Н. Баланс массы и термодинамический режим ледника в кратере Ушковского вулкана // Вулканология и сейсмология. 1989. № 3. С. 85–92.
  6. Торопов П.А., Михаленко В.Н., Кутузов С.С., Морозова П.А., Шестакова А.А. Температурный и радиационный режим ледников на склонах Эльбруса в период абляции за последние 65 лет // Лёд и Снег. 2016. Т. 56. Вып. 1. С. 5–19. https://doi.org/10.15356/2076-6734-2016-1-5-19
  7. Торопов П.А., Шестакова А.А., Ярынич Ю.И., Кутузов С.С. Моделирование орографической составляющей осадков на примере Эльбруса // Лёд и Снег. 2022. Т. 62. Вып. 4. С. 485–503. https://doi.org/10.31857/S2076673422040146
  8. Фирц Ш., Армстронг Р.Л., Дюран И., Этхеви П., Грин И., Маккланг Д.М., Нишимура К., Сатьявали П.К., Сократов С.А. Международная классификация для сезонно выпадающего снега (руководство к описанию снежной толщи и снежного покрова): Русское издание // Материалы гляциологических исследований. 2012. № 2. 80 с.
  9. Хромова Т.Е., Носенко Г.А., Глазовский А.Ф., Муравьев А.Я., Никитин С.А., Лаврентьев И.И. Новый Каталог ледников России по спутниковым данным (2016–2019 гг.) // Лёд и Снег. 2021. Т. 61. Вып. 3. С. 341–358. https://doi.org/10.31857/S2076673421030093
  10. Barry R.G. Mountain weather and climate. London: Cambridge University Press, 2008. 505 p.
  11. Beniston M., Farinotti D., Stoffel M., Andreassen L.M., Coppola E., Eckert N., Fantini A., Giacona F., Hauck C., Huss M., Huwald H., Lehning M., López-Moreno J.-I., Magnusson J., Marty C., Morán-Tejéda E., Morin S., Naaim M., Provenzale A., Rabatel A., Six D., Stötter J., Strasser U., Terzago S., Vincent C. The European Mountain cryosphere: a review of its current state, trends, and future challenges // Cryosphere. 2018. № 12. P. 759–794. https://doi.org/10.5194/tc-12-759-2018
  12. Chizhova Yu.N., Mikhalenko V.N., Korneva I.A., Hayredinova A.G., Vorobiev M.A., Muravyov Ya.D. New Data on Deuterium Excess Values of Glacial Ice in Kamchatka Peninsula // Doklady Earth Science. 2024. V. 517. P. 1387–1392. https://doi.org/10.1134/S1028334X24602190
  13. Clifford H.M., Potocki M., Rodda C., Dixon D., Birkel S., Handley M., Mayewski P.A. Prefacing unexplored archives from Central Andean surface-to-bedrock ice cores through a multifaceted investigation of regional firn and ice core glaciochemistry // Journ. of Glaciology. 2023. V. 69. № 276. P. 693–707. https://doi.org/10.1017/jog.2022.91
  14. Essery R., Kim H., Wang L., Bartlett P., Boone A., Brutel-Vuilmet C., Burke E., Cuntz M., Decharme B., Dutra E., Fang X., Gusev Y., Hagemann S., Haverd V., Kontu A., Krinner G., Lafaysse M., Lejeune Y., Marke T., Marks D., Marty C., Menard C. B., Nasonova O., Nitta T., Pomeroy J., Schädler G., Semenov V., Smirnova T., Swenson S., Turkov D., Wever N., Yuan H. Snow cover duration trends observed at sites and predicted by multiple models // The Cryosphere. 2020. V. 14. P. 4687–4698. https://doi.org/10.5194/tc-14-4687-2020
  15. Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J-N. (2023): ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 30.03.2024. https://doi.org/10.24381/cds.bd0915c6
  16. Huss M., Hock R. Global-scale hydrological response to future glacier mass loss // Natural Climate Changing. 2018. 8 (2). P. 135–140. https://doi.org/10.1038/s41558-017-0049-x
  17. Kodama Y., Shiraiwa T., Kobayashi D., Matsumoto T., Yamaguchi S., Muravyev Ya.D., Glazirin G.E. Hydrometeorological and glaciological observations in the Koryto and Ushkovsky Glaciers, Kamchatka // Low Temperature Science. Ser. A. 1996. 55. P. 107–136.
  18. Korneva I.A., Toropov P.A., Muraviev A.Ya., Aleshina M.A. Climatic factors affecting Kamchatka glacier recession // International Journ. of Climatology. 2024. V. 44 (2). P. 345–369. https://doi.org/10.1002/joc.8328
  19. Lehning M., Bartelt P., Brown B., Fierz C., Satyawali P. A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure // Cold regions science and technology. 2002a. 35 (3). P. 147–167. https://doi.org/10.1016/S0165-232X(02)00073-3
  20. Lehning M., Bartelt P., Brown B., Fierz C. A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation // Cold Regions Science and Technology. 2002b. 35 (3). P. 169–184. https://doi.org/10.1016/S0165-232X(02)00072-1
  21. Matoba S., Ushakov S.V., Shimbori K., Sasaki H., Yamasaki T., Ovshannikov A.A., Manevich A.G., Zhideleeva T.M., Kutuzov S., Muravyev Ya.D., Shiraiwa T. The glaciological expedition to Mount Ichinsky, Kamchatka, Russia // Bulletin of Glaciological Research. 2007. 24. P. 79–85.
  22. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fa.n X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
  23. Ozeki T., Akitaya E. Energy balance and formation of sun crust in snow // Annals of Glaciology. 1998. V. 26. P. 35–38.
  24. Pinzer B.R., Schneebeli M., Kaempfer T.U. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography // The Cryosphere Discussions. 2012. V. 6 (3). P. 1673–1714. https://doi.org/10.5194/tc-6-1141-2012
  25. Quéno L., Vionnet V., Cabot F., Vrécourt D., Dombrowski-Etchevers I. Forecasting and modelling ice layer formation on the snowpack due to freezing precipitation in the Pyrenees // Cold Regions Science and Technology. 2018. V. 146. P. 19–31. https://doi.org/10.1016/j.coldregions.2017.11.007
  26. Quéno L., Fierz C., van Herwijnen A., Longridge D., Wever N. Deep ice layer formation in an alpine snowpack: monitoring and modeling // The Cryosphere. 2020. V. 14 (10). P. 3449–3464. https://doi.org/10.5194/tc-14-3449-2020
  27. Sato T., Shiraiwa T., Greve R., Seddik H., Edelmann E., Zwinger T. Accumulation reconstruction and water isotope analysis for 1735–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records // Climate of the Past Discussions. 2013. V. 9 (2). P. 2153–2181. https://doi.org/10.5194/cpd-9-2153-2013
  28. Schlögl S., Lehning M., Nishimura K., Huwald H., Cullen N.J., Mott R. How do Stability Corrections Perform in the Stable Boundary Layer Over Snow? // Boundary-Layer Meteorol. 2017. V. 165. P. 161–180. https://doi.org/10.1007/s10546-017-0262-1
  29. Shiraiwa T., Muravyev Ya.D., Yamaguchi S. Stratigraphic Features of Firn as Proxy Climate Signals at the Summit Ice Cap of Usnkovsky Volcano, Kamchatka, Russia // Arctic and Alpine Research. 1997. V. 29 (4). P. 414–421.
  30. Shkaberda O.A., Vasilevskaya L.N. Long-term variability of the temperature and humidity regime on the Kamchatka peninsula // Izvestiya TINRO. 2014. V. 178 (3). P. 217–233. https://doi.org/10.26428/1606-9919-2014178-217-233
  31. Thompson L.G., Davis, M.E., Mosley-Thompson E., Porter S.E., Corrales G.V., Shuman C.A., Tucker C.J. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records // Global and Planetary Change. 2021. V. 203. P. 103538. https://doi.org/10.1016/j.gloplacha.2021.103538
  32. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the greater caucasus, 20th–21st century // International Journ. of Climatology. 2019. V. 39. P. 4703–4720. https://doi.org/10.1002/joc.6101
  33. Wever N., Schmid L., Heilig A., Eisen O., Fierz C., Lehning M. Verification of the multi-layer SNOWPACK model with different water transport schemes // The Cryosphere. 2015. V. 9. P. 2271–2293 https://doi.org/10.5194/tc-9-2271-2015
  34. Wever N., Würzer S., Fierz C., Lehning M. Simulating ice layer formation under the presence of preferential flow in layered snowpacks // The Cryosphere. 2016. V. 10 (6). P. 2731–2744. https://doi.org/10.5194/tc-10-2731-2016

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Карта районов исследований для вулкана Ушковский (а) и вулкана Эльбрус (б)

Скачать (776KB)
3. Рис. 2. Диаграмма рассеяния для температуры снежного покрова на глубинах от 60 до 120 см за период 04–05.02.2024 на леднике Гарабаши на вулкане Эльбрус по результатам модели SNOWPACK и данным наблюдений по термокосе Geoprecision (1) и линия аппроксимации для всех точек (2). R2 – коэффициент детерминации

Скачать (162KB)
4. Рис. 3. Распределение стратиграфии и высоты снежного покрова в кратере Горшкова на вулкане Ушковский по результатам модели SNOWPACK по данным реанализа ERA5 и с использованием параметризации орографического добавка к осадкам для периода с 1986 по 1997 г. Цветная шкала показывает форму снежных зёрен и кристаллов в соответствии с (Фирц и др., 2012)

Скачать (740KB)
5. Рис. 4. Вертикальные профили плотности снежного покрова по данным керна 1996 года (Kodama et al., 1996) (1) и результатам моделирования с помощью SNOWPACK (2), а также аппроксимирующие кривые (3) и (4) для этих профилей соответственно. R2 – коэффициент детерминации между двумя аппроксимирующими кривыми

Скачать (442KB)
6. Рис. 5. Температура воздуха на изобарической поверхности 600 гПа за период 1986–2022 гг. по данным реанализа для различных барических поверхностей ERA5 Pressure levels (а), где синим цветом показан период моделирования 1986–1997 гг. (1), красным цветом – 1998–2023 гг. (2). Вертикальные профили плотности снежного покрова (б) по данным керна 1996 года (Kodama et al., 1996) (3) и 14-метрового керна, пробуренного в 2022 г. (4)



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.