Application of solar dryers for drying agricultural products and optimization of drying time


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Given the limited mineral resources and the impossibility of using the world’s hydrocarbon reserves in a steady and growing way in the near future, the most important task facing every country is to find a way to prevent the impending energy crisis or alleviate the country’s energy problems. One of the ways to solve the global problems facing humanity is to use renewable energy sources. Based on the above information in this article, a method for analyzing the drying of agricultural products using solar and electricity has been developed. Modern designs of drying devices have been studied. Experimental studies were conducted on the basis of experimental research data, a sample of a solar dryer was constructed, optimal measurements were calculated, and the results of theoretical and experimental studies were presented. The thermotechnical properties of the solar dryer were studied. One of the most pressing issues today is the efficient use of solar energy and, of course, the development of energy-efficient energy-efficient devices, the introduction of the device into practice. The energy device we recommend below allows you to process and harvest agricultural products, fruits and vegetables in a timely manner, ensure the continuity of the drying process, and obtain fast and high-quality dried products with low energy consumption.

Full Text

Restricted Access

About the authors

Rustam Kh. Rakhimov

Institute of Materials Science, SPA “Physics-Sun”, Academy of Science of Uzbekistan

Email: rustam-shsul@yandex.com
Dr. Sci. (Eng.); Head at the Laboratory No. 1 Tashkent, Republic of Uzbekistan

Dilmurod N. Mukhtorov

Fergana Polytechnic Institute

Email: dimajone0909@gmail.com
assistant at the Department of Electrical Engineering, Electrical Mechanics and Electrical Technology Fergana, Republic of Uzbekistan

References

  1. Lebedev P.D. Heat exchange, drying and refrigeration units: Textbook for students of technical universities.
  2. Lykov A.V. Theory of drying.
  3. Vasiliev A.V. Dry with economy. Daresay, 2008.
  4. Muhtorov D.N. Usage of combined solar power devices for drying agricultural products. Part 2. Modern Problems of Science and Education. 2019. No. 11 (144). Рр. 29-31.
  5. Didovich A.N., Kalafatov E.T., Macalis A.M., Pastecki V.S. Heliodryer for agricultural products. URL: https://patent ru176309u1 (data accesses: 16.01.2018).
  6. World experience in drying agricultural products. URL: https://yandex.uz/turbo/mehanik-ua.ru/s/sbornik-statej/1034-mirovoj-opyt-sushki-selskokhozyajstvennoj-produktsii.html
  7. Artykov S., Makaurov T.M. Heliosushilka for tobacco. Heliotechnika. 1978. No. 1. Pp. 72-74.
  8. Ismailova A.A., Bektenov L.B. Experimental analysis on the use of transparent film and glass for solar dryers. In: Questions of theory and experimental physics. Alma-Ata, 1979. Pp. 96-100.
  9. Krepis I. Solar dryers, greenhouses, greenhouses. Agriculture of Moldova. 1979. No. 8. Pp. 47-49.
  10. Monakov V.A., Gubenko N.V. The use of solar energy for drying herbs. Mechanization and Electrification of Social Agriculture. 1978. No. 8. Pp. 17-18.
  11. Umarov G.Ya., Avezov R.R., Ikramov A.I. Use of solar energy for drying fruits and vegetables. Canning and Vegetable Industry. 1978. No. 10. Pp. 22-23.
  12. Bahrns D. Solar grain drying. Crops and Soils Magaz. 1978. Vol. 30. No. 4. Pp. 15-16.
  13. Bryan W. Direct solar drying of fruits and vegetables in the southeastern United States. Energy use Manag. Proc. Int. Conf. Tucson. Ariz., 1977. Vol. 3-4. New York: e.a. 1978. Pp. 521-525.
  14. Dernedde W., Peters H. Wirkungsgrade von Solar-Luftkollektoren fur Trocknungsanlagen. Landtechnik. 1978. Bd. 1. H. 33. S. 29-30.
  15. Pfister T. Heubeluftung und Sonnenenergie in der Ladwirtschaftlihe Schule Flawill. Schweiz. Landtechn. 1979. Bd. 41. H. 1. S. 22-23.
  16. Schulz H. Sonnenenergie in Haus Hof. H. Teil. Top Agrar. 1977. H. 7. S. 64-68.
  17. Solar dryers. URL: http://www.mensh.ru/articles/solnechnye-sushilki
  18. Solar dryers for crop production. URL: https://yandex.uz/turbo/mehanik-ua.ru/s/solnechnye-gelio-sushilki/1809-geliosushilki-dlya-rastenievodcheskoj-produktsii.html
  19. Hubert J., Rakhimov R.Kh., Peter D., Ermakov V.P. Opportunities for effective innovation. Comp. Nanotechnol. 2020. No. 1. Pp. 15-18.
  20. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Latipov R.N. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 6. Comp. Nanotechnol. 2016. No. 3. Pp. 6-34.

Supplementary files

Supplementary Files
Action
1. JATS XML


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies