ANALYSIS OF COMPETING VARIANTS OF AIR CONDITIONING SYSTEMS WITHOUT AIR EXTRACTION FROM ENGINES AT THE STAGE OF PASSENGER AIRCRAFT ONBOARD SYSTEMS CONCEPTUAL DESIGN


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.

全文:

受限制的访问

作者简介

Denis Smagin

Moscow Aviation Institute (Research University)

head of laboratory 5, research Department 101 Moscow, Russian Federation

Konstantin Starostin

Moscow Aviation Institute (Research University)

senior lecturer of the Department 812 Moscow, Russian Federation

Roman Savelyev

Moscow Aviation Institute (Research University)

laboratory engineer 5, research Department 101 Moscow, Russian Federation

Anatoly Satin

Moscow Aviation Institute (Research University)

laboratory engineer 5, research Department 101 Moscow, Russian Federation

Anastasiya Neveshkina

Moscow Aviation Institute (Research University)

laboratory engineer 5, research Department 101 Moscow, Russian Federation

Darya Suzdaltseva

Moscow Aviation Institute (Research University)

Email: r_sr@inbox.ru
laboratory engineer 5, research Department 101 Moscow, Russian Federation

参考

  1. Wheeler P., Prof. The more electric aircraft: Why aerospace needs power electronics.
  2. Каллиопин А.К. Математическое моделирование авиационных систем кондиционирования воздуха. М.: МАИ, 1992.
  3. Каллиопин А.К., Савельев Р.С., Смагин Д.И. Основные тенденции развития систем кондиционирования воздуха перспективных летательных аппаратов // Инженерный журнал: наука и инновации. 2017. Вып. 6.
  4. Innovation Process. Stage-Gate Idea-to-launch Model. Стандарт по системе Stage-Gate.
  5. Антонова Н.В., Дубровин Л.Д., Егоров Е.Е. и др. Проектирование авиационных систем кондиционирования воздуха / ред. Ю.М. Шустров. М.: Машиностроение, 2006.
  6. Полевой А.А. Автоматизация холодильных установок и систем кондиционирования воздуха. СПб.: Профессия, 2010.
  7. Cronin M.J. Design aspect of systems in all electric aircraft // SAE Technical Papers Series. 1982. № 821436. 11 p.
  8. Воронович С., Каргапольцев В., Кутахов В. Полностью электрический самолет // Авиапанорама. 2009. № 2. С. 23-27.
  9. Гарганеев А.Г., Харитонов С.А. Технико-экономические оценки создания самолета с полностью электрифицированным оборудованием // Доклады ТУСУРа. 2009. № 2 (20). С. 179-184.
  10. Nelson T. B787 systems and performance. Boeing, 2005. 36 p.
  11. Liebherr-Aerospace, Germany. Liebherr-International Deutschland GmbH, 2016.
  12. Rӧyttä P. Study of a vapor-compression air-conditioning system for jetliners. Lappeenrannan teknillinen yliopisto Digipaino, 2009. 86 p.

补充文件

附件文件
动作
1. JATS XML


##common.cookie##