SIMULATION MEANS OF ELECTROSTATIC DISCHARGES IN THE SYSTEM “STATIONARY PLASMA THRUSTER - TRANSFORMATION AND CONTROL SYSTEM”


Cite item

Full Text

Abstract

The elements of construction of electric propulsion system of spacecraft (SC) correction can accumulate electro- static charge due to interaction with the magnetospheric plasma. The impact of electrostatic discharges on the electri- cal circuit of the correction system can lead to failures of the transformation and control system (TCS). Particular attention is currently being paid to solving the problems related to the impact of electrostatic discharges on electric circuits of the power conditioning units, designed for power supply and control electric propulsion thrusters of space craft correction. Due to the design of the propulsion subsystem thrusters it is impossible to solve the problem of electric charge impact on TCS electric circuits through shielding these circuits. Therefore the impact of electrostatic discharges on electric circuits from the propulsion subsystem thruster is considered to be one of the factors determining the reliability and failure-free operation of TCS and, consequently, of the overall spacecraft propulsion subsystem. This problem is important today due to the following: the widespread use of electric propulsion thrusters in GEO spacecraft correction systems, the implementation of new TCS design and technical solutions suitable for spacecraft unpressurized platforms, the implementation of new electronic component base. The paper addresses the simulation means of electrostatic discharges occurring on the ceramics of the stationary plasma thruster and impacting TCS electric circuits, in particular the test equipment for generating high-voltage pulses, which allows replacing long-term and expensive tests performed on vacuum test benches. The paper contains the review of validation test results for TCS means of protection from electrostatic charge effects using high-voltage pulse generat- ing (HVPG).

Full Text

Introduction. During flight operation the spacecraft (SC) and its subsystems equipment are exposed to space factors (SP) [1; 2]. In the interaction of magnetospheric plasma (MP) with the construction materials of the outer surface of the SC, due to the complex geometry of the SC surface, the differences in light and electro physical parameters of various fragments of the surface, there is a differential charge distribution on the SC surfaces interacting with the surrounding plasma, and nonuniform volume charge of structural materials of surfaces [3-6]. One of the systems of the SC, which is exposed directly to the MP is the correction system (CS) [7]. The most important element of CS is the transformation and control system (TCS) which is electrically connected with a stationary plasma thruster (SPT), having in its composi- tion the gas-discharge chamber (GDC). The ceramics used in the manufacture of GDC under the influence of MP accumulates a charge, and under certain conditions electrostatic discharges (ESD) occur. Stray currents of these discharges may penetrate into the electric circuit and have a negative impact (up to failure) on the performance of TCS and the CS as a whole [8]. Simulation of MP impact on the system SPT-TCS. During geomagnetic disturbances the current density of electrons may rise to a value of 1·10 -9 A· cm-2 [1; 9]. Settling time of fixed charge in the irradiated ceramics used in the composition of GDC for engine SPT-100V in the modeling of charging under laboratory conditions ranges from 100 to 125 sec. [10]. In this case, the maximum possible electric charge accumulated on the inner surface of GDC engine SPT-100V with an area of 187 cm2 is equal to 2·10-5 C [11]. In the case of ESD there is a proba- bility that the stored charge “flows” through the circuit of the anode to the control circuit and power supply. To confirm the efficiency of the system SPT-TCS under the impact of MP during normal operation, it is necessary to model space factors (SF) at the stage of experimental ground tests EGT [12]. On a special stand was simulated the impact of MP on the system SPT-TCS with the parameters presented in tab. 1. In the result of simulated SP on the system SPT-TCS in the anode circuit of SPT were recorded interference pulses with negative polarity characteristic of the discharge event caused by the accumulation of negative potential on SPT ceramic, then resetting the charge in the anode circuit of the SPD. Fig. 1 shows the interference pulse with maximum amplitude of 2.7 kV, a rise time of 40 ns [11]. Table 1 Parameters of the simulated magnetospheric plasma Impacts Impact factors parameters Electrons Еe = 70 keV, J e =1· 10 -9 А · сm-2 Vacuum Oil-free pumping Residual pressure of not more than 10 -6 Torr SPT ceramic temperature - 45 °C Fig. 1. Interference pulse in the anode circuit of SPT Рис. 1. Помеховый импульс в цепи анода СПД With the aim of developing and testing means of pro- tection against the negative influence of electrostatics on the system SPT-TCS there is a need in experimental work on specialized installations that simulate the effects of magnetospheric plasma, which is very costly both in time and financial [13]. For optimization and minimization of financial and technical supports to conduct testing on the stage of the EGT protection system of SPT-TCS on the technical task of the JSC “ISS” Institute of nondestructive testing of Tomsk Polytechnic University have developed and manu- factured test equipment for generating high voltage pulses (HVPG), which allows to simulate a direct injection gained in ceramics in an electric circuit of TCS [14; 15]. The discharge impulse of HVPG has a negative polar- ity. The impulse front is less than 10 ns. Voltage is adjustable between 3 to 9 kV. Reset charge is from 3·10-6 to 3·10-5 C. These characteristics of the discharge pulses correspond to the characteristics obtained by simulation of the impact of MP on the system SPT-TCS using specialized test benches [11; 13]. Technical characteristics of HVPG. The principle of the HVPG is based on generating a high voltage pulse with a negative polarity output voltage and a steep rise front [14]. A pulse is generated at the discharge of the capacitor to the switch. As the switch a hydrogen thyra- tron with a cold cathode with working gas (“thyratron”) of low pressure is used. The charge of the capacitor and the control of thyratron work are carried by means of electronic circuits, described below. A structural scheme of HVPG is showed at fig. 2. The input supply voltage through the interference suppress filter (ISF) is supplied to high voltage transformer (HVT) and control system (SC). SC controls the operation of the HVT, the unit of heat generator hydrogen thyratron (UHG), a unit of preionization (UPI) and unit of ignition of the thyratron (UIT). The thyratron is located in the unit of impulse forming (UIF), there is also a replacement high voltage capacitor. The output signal from the UIF is made through a high-voltage cable with contact tip (CT). Fig. 3. shows the UIF scheme. In the initial state, the capacitance С0 is charged to voltage U0 through the diode D1. When thyratron Tr works a negatively charged С0 is discharged through RH. Pulse amplitude of the load voltage depends on С0 and the value of the complex impedance of the load. Fig. 4, 5 show the form of the high-voltage pulse with U0 = 3 kV, С0 = 1000 pF and U0 = 9 kV, С0 = 3300 pF, respectively, taken from a low-inductive load RH = 50 Ohm with a high voltage divider with kd = 1:1000. Changing the values U0 and С0, it is possible to vary widely the amount of electric charge (Qcharge), passing through the load. Tab. 2 shows the values of Qcharge with different values of U0 and С0. The results of testing. With the help of HVPG experimental researches were conducted that formed the basis for the development and verification of the effec- tiveness of the protection means of the TCS from the influence of the electrostatic charge effect occurring on ceramic of engine SPT [16]. Fig. 2. Structural scheme of HVPG Рис. 2. Структурная схема ГВИ Fig. 3. UIF scheme Рис. 3. Схема БФИ Fig. 4. High voltage pulse form within U0 = 3 kV, С0 = 1000 pF Рис. 4. Форма высоковольтного импульса при U0 = 3 кВ, С0 = 1000 пФ Fig. 5. High voltage pulse form within U0 = 9 kV, С0 = 3300 pF Рис. 5. Форма высоковольтного импульса при U0 = 9 кВ, С0 = 3300 пФ Fig. 6. shows the results of testing. The validation of TCS security means was performed by applying to the input of the protection filter in the circuit of the anode of a series of high-voltage discharge impulses using a generator HVPG with the following characteristics of output voltage on the resistive load of 50 Ohms: - pulse amplitude - minus 3 kV; - pulse duration of 10-7 s; - charge 3×10-6 C; - number of pulses - 20. The oscillogram of the output pulse of HVPG on the 50 Ohm load is shown in fig. 7. The amplitude of the negative impulse - minus of 2.94 kV. During the test, when exposed to a pulse from HVPG at the circuit of the anode to the input cable “Engine- TCS”, the parameters of the discharge pulses at the beginning of “Anode” line and the voltage in the anode circuit of TCS after the protection filter were under con- trol. Measuring at the input circuit was carried out using a voltage divider 1000:1. Fig. 8 shows the standard oscillogram of voltage in the anode circuit at the input cable “Engine-TCS”. Fig. 9 shows a typical voltage oscillogram in the anode circuit of high-voltage TCS after protection filter under influence on the circuit of the anode. Due to the fact that the voltage pulse from the HVPG is fed to the unloaded circuit, the voltage at the beginning of the line and at the end (after the PF) is oscillatory and with the increased amplitude. The results of measurements of HVPG impact on the circuit of the anode are given in tab. 3. Conclusion. Developed HVPG allows simulating a direct injection of charge in the investigated electrical circuit. Discharge pulse of HVPG has characteristics that correspond to characteristics obtained by simulation of the impact of MP on the system SPT-TCS using spe- cialized test benches. HVPG is put into operation at the JSC “ISS” and is used when conducting EGT BА. With the help of HVPG experiments on TCS resistance for space craft designed by JSC “ISS”, such as Yamal-400, Express-AM, Telcom etc. The use of HVPG allows to confirm the effectiveness of the measures taken for the protection of the TCS from the negative impacts of MP on CS at the stage of experi- mental ground testing (EGT) with minimal time and financial investments. Table 2 The values of the electric charge at different variable options of HVPG С0, pF U0, kV 3.0 4.5 6.0 7.5 9.0 1 000 3.00·10-6 C 4.50·10-6 C 6.00·10-6 C 7.50·10-6 C 9.00·10-6 C 1 500 4.50·10-6 C 6.75·10-6 C 9.00·10-6 C 1.13·10-5 C 1.35·10-5 C 3 300 9.90·10-6 C 1.49·10-5 C 1.98·10-5 C 2.48·10-5 C 2.97·10-5 C Fig. 6. Testing scheme of the protection means of TCS: ГВИ (HVPG) - high-voltage pulses generator; СПУ-КТ (TCS-КТ) - the layout of the system of power supply and control; ФЗ-КТ (PF-КТ) - protection filter; УУП-КТ (CPSD) - control and power supply device; A - anode circuit; ЭК (SC) - screened chamber; ЗФ (BF) - bed filter, Д (D) - high-voltage divider Рис. 6. Схема испытаний по проверке средств защиты СПУ: ГВИ - генератор высоковольтных импульсов; СПУ-КТ - макет системы питания и управления; ФЗ-КТ - фильтр защиты; УУП-КТ - устройство управления и питания; А - цепь анода; ЭК - экранированная камера; ЗФ - засыпной фильтр; Д - высоковольтный делитель напряжения Fig. 7. Output pulse of HVPG on the 50 Ohm load Рис. 7. Выходной импульс ГВИ на согласованной нагрузке 50 Ом Fig. 8. Voltage at the beginning of the line in the anode circuit 614 Рис. 8. Напряжение в начале линии в цепи анода Fig. 9. The voltage in the anode circuit of the TCS layout after protection filter under the influence on the circuit of the anode Рис. 9. Напряжение в цепи анода макета СПУ после фильтра защиты при воздействии в цепь анода Table 3 The results of measurements The voltage swing at the beginning of the line to the inlet of the cable “Engine-TCS”, V 5920 The voltage swing at the outlet PF, V 236
×

About the authors

D. A. Trofimchuk

JSC “Academician M. F. Reshetnev” Information Satellite Systems”

Email: trofden@mail.ru
52, Lenin Str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation

Y. A. Bezhayev

National Research Tomsk Polytechnic University

30, Lenina Av., Tomsk, 634050, Russian Federation

V. V. Ivanov

JSC “Academician M. F. Reshetnev” Information Satellite Systems”

52, Lenin Str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation

S. G. Kochura

JSC “Academician M. F. Reshetnev” Information Satellite Systems”

52, Lenin Str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation

I. A. Maximov

JSC “Academician M. F. Reshetnev” Information Satellite Systems”

52, Lenin Str., Jeleznogorsk, Krasnoyarsk region, 662972, Russian Federation

References

  1. Модель космоса. В 2 т. Т. 2. Воздействие косми- ческой среды на материалы и оборудование космиче- ских аппаратов / под ред. М. И. Панасюка, Л. С. Новикова. М. : КДУ, 2007. 1144 с.
  2. Horwitz J. L. Dynamics of Magnetospheric Plasmas // Journal of spacecraft and rockets. 1985. Vol. 22, № 3. P. 225-230.
  3. Максимов И. А., Кочура С. Г. Исследование влияния факторов космического пространства и тех- ногенных факторов на космические аппараты, разра- ботка методов и средств защиты : монография / Сиб. гос. аэрокосмич. ун-т. Красноярск, 2011. 182 с.
  4. NASA-HDBK-4002A, Mitigating in-space charging effects - a guideline. NASA, 2011, 181 p.
  5. Основные правила повышения безопасности кос- мических аппаратов в условиях радиационной электри- зации / Г. В. Бабкин [и др.] // Руководство для конструк- торов / ЦНИИМаш. ГОНТИ-1, 1990. 179 с.
  6. Моделирование радиационной электризации конструкционных материалов космических аппаратов / Д. А. Трофимчук [и др.] // Тр. Всерос. конф. студенче- ских науч.-исслед. инкубаторов (15-17 мая 2014, г. Томск) / под ред. В. В. Демина. Томск : Изд-во НТЛ, 2014. 180 с.
  7. Проблема электростатических разрядов в элек- трореактивной двигательной подсистеме геостацио- нарного космического аппарата / Д. А. Трофимчук [и др.] // Актуальные вопросы проектирования авто- матических космических аппаратов для фун тальных и прикладных научных исследований / дамен- сост. ни С. В. В. Ефанов. Химки : Изд-во ФГУП «НПО име А. Лавочкина», 2015. С. 285-289.
  8. Проблема электростатических разрядов в элек- трореактивной двигательной подсистеме геостацио- нарного космического аппарата / Д. А. Трофимчук [и др.] // Вестник СибГАУ. 2015. Т. 16, № 2. С. 404-410.
  9. Garret H. B. The geosynchronous plasma environment, AIAA Paper 90-0289. 1999. 16 p.
  10. Отчет по результатам теоретических и экспе- риментальных исследований электризуемости керамик различных марок под действием электронов с энер- гиями 70-100 кэВ и плотностью тока 0,5-1 нА/см2, в диапазоне температур плюс 20 °С до минус 50 °С : техн. отчет / Зыков М. В., Бежаев Ю. А. и др. О1-5-156/13. Томск : ИНК ТПУ, 2014. 14 с.
  11. Отчет по результатам проведения тестовых экспериментов по исследованию помеховых сигналов, наводимых в электрических цепях СПУ при воздейст- вии электронов магнитосферной плазмы с энергиями 70-100 кэВ и плотностью тока 0,5-1 нА/см2 : техн. отчет / Зыков М. В., Бежаев Ю. А. и др. // О2-5-156/13. Томск : ИНК ТПУ, 2014. 17 с.
  12. Наземные стендовые испытания космических аппаратов на стойкость к воздействию радиационной электризации / О. С. Графодатский [и др.] // Руково- дство для конструкторов / ЦНИИМаш. ГОНТИ-1, 1992. 157 с.
  13. Проблемы расчетно-экспериментального моде- лирования радиационной электризации разрядной каме- ры высокоимпульсного холловского двигателя систе- мы коррекции космического аппарата / Ю. А. Бежаев [и др.] // Радиационная стойкость электронных систем - Стойкость-2014 : науч.-техн. сб. тезисов докладов. М. : Изд-во ФГУП «НИИП», 2014. С. 263-265.
  14. Изготовление макета генератора для имитации прямой инжекции сброшенного разрядного заряда в схему питания стационарного плазменного двигате- ля : техн. отчет / Зыков М. В., Бежаев Ю. А. и др. // Томск : ИНК ТПУ, 2013. 13 с.
  15. Экспериментальная оценка стойкости блока управления холловским двигателем СПД-100 подсис- темы коррекции к воздействию радиационной элек- тризации космического пространства / Ю. А. Бежаев [и др.] // Радиационная стойкость электронных систем - Стойкость-2014 : науч.-техн. сб. тезисов докладов. М. : Изд-во ФГУП «НИИП», 2014. С. 261-263.
  16. Разработка и экспериментальная отработка ме- тодов и средств защиты системы управления высоко- импульсного блока коррекции на базе холловского двигателя для геостационарных космических аппаратов от электростатических разрядов : техн. отчет / Зыков М. В., Чигорко А. А. и др. // ТО1-156/13-3-15. Томск : ИНК ТПУ, 2014. 45 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Trofimchuk D.A., Bezhayev Y.A., Ivanov V.V., Kochura S.G., Maximov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies